Loading...
HomeMy WebLinkAbout765 Airport Blvd - Techinical Studyi. . . - . ' . . . ' . _ . . � . J. � � � � � 1 . � `\ � � . ,� , : . � J - �. T_ . .F � � � RANSPORTATION IMPACT �ANALYSIS � FOR � J . . . . . . , . . .. . . .'. � �- . ' ' �, . . �: . , : r . : , �. ' . � . , , _ . . � _ � 765 " AIRPOR T B O ULE.VARI� � � . ^ , � B URLIIVGAME, CALIFORNIA� � ,. , - . _ , : . , , . , � , .� , . ,. . . ( � J �� � � � . _ . . .. . - , � � � � � . - - . . �� �- ��� ��� � , �� ��� � � , ,. , I'repared : for., ; . . , - 765 Airport Boulevard . � Limited Partnershi� " � � �. �.' '�. ,..... � ,�.�. . ' � r: •., .. . . ,. ' . ' . � .. ' . . � \ . � . ' • . _ • . ' f - ' . , ) � . �i, ' • ' ' . . ' . . . . . . . .. . '.. . l .. . _ . . ., ` , ' . . , Prepared by �_ : ` Fehr � Peers Associates,'=l�aco � . .. � _ . - _ � � , ; � : ' '' . , '� � ; � . . „ ' , - . . � - Fe.bruary .' 1,4, I997 �- , .., , : . , J � . � � _ : - 9 i5- 012 � � . � � J � . � , . - �� : � � : Fehr & Peers Associ�tes � � -� • , , :' , � Transport�tion. Consultants � �. --� ` � 150AImaden Boulevard -' l i � " Suite 13b0 - . San Jose, CA 95113 , � , ,.. � 408 278-1700 .; ` . _ FAX 408 278-7717 JII � : � I�� TABLE OF CONTENTS I •J I. INTRODUCTION .......................................... 1 � I ...................................3 II. EXISTING CONDIT ONS � A . Roadway System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 B . Bicycle Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 C . Pedestrian Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 � D . Existing Roadway Operations . . . . . . . . . . . . . . . . . . . . . . : . . . . . . 5 1. Existing Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. Existing Lane Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 � 3. Existing L,evels of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1`2 !� III. BACKGROUND CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 A . Background Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 � B . Background Roadway Operations . . . . . . . . . . . . . . . . . . . . . . . 19 IV. PROJECT CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 � A . Project Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 B . Project Roadway Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 ' � V. CUMULATIVE CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 � A . Cumulative Developments 36 `J B . Cumulative Roadway Operations . . . . . . . . . . . . . . . . . . . . . . . . . 36 � VI. SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 U APPENDICES � Appendix A- LOS Calculation Sheets Appendix B- Analyzer LOS Calculation Sheets � � � � � � � J � � � � � J � Table 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 LIST OF TABLES •Page Level of Service Definitions for Signalized Intersections . . . . . . . . . . . . . . . . . 6 Level of Service Definitions for Unsignalized Intersections . . . . . . . . . . . . . . . 8 Level of Service Definitions for Freeway Segments . . . . . . . . . . . . . . . . . . . . 9 Existing Intersection Levels of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Existing Intersection Operations Using the Analyzer . . . . . . . . . . . . . . . . . . . 14 Existing Freeway Segment Volume-To-Capacity Ratios . . . . . . . . . . . . . . . . ,. 15 Approved and Pending Development Trip Generation Estimates . . . . . . . . . . . 17 Background Intersection Levels of Service . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Background Intersection Operations Using the Analyzer (PM Peak Hour) ..... 23 Background Freeway Segment Volume-to-Capacity Ratios . . . . . . . . . . . . . . . 24 Project Trip Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Background I and Project Intersection Levels of Service . . . . . . . . . . . . . . . . . 31 Background II and Project Intersection Levels of Service . . . . . . . . : . . . . . . . 32 Project Intersection Operations Using the Analyzer (PM Peak Hour) ........ 34 Background and Project Freeway Segment Volume-to-Capacity Ratios ....... 35 Vacant and Underutilized Parcels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Intersection Capacity Consumption Rates for Cumulative Conditions ........ 39 Cumulative Intersection Operations Using the Analyzer (PM Peak Hour) ..... 40 Intersection Levels of Service Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Summary of Analyzer Results - PM Peak Hour . . . . . . . . . . . . . . . . . . . . . . 43 Freeway Segment Volume-to-Capacity Ratio Comparison . . . . . . : . . . . . . . . 45 � � D D � � � � � � � � Fig.ure 1 2 3 4 5 6 7 8 9 LIST OF FIGURES � Pa�e Site Location Map . . . . . . . . . . : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Existing Peak Hour Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Existing Intersection Lane Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Background Peak Hour Volumes (Without 577 Airport Boulevard) . . . . . . . . . 18 Background Peak Hour Volumes (with 577 Airport Boulevard) . . . . . . . . . . . . 20 Project Trip Distribution Inbound Trips . . . . . . . . . . . . . . . . . . . . . . . . : . 28 Project Trip Distribution Outbound Trips . . . . . : . . . . . . . . . . . . . . . . . . . 29 Project Trip Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Vacant and Under-Utilized Parcels in the Project Area . . . . . . . . . . . . . . . . . .37 � � � U � I•� � � �' � � � � I�1 765 Airport Boulevard Limited Partnership February 14, 1997 I . � INTRODUCTION This report presents the results of the transportation impact analysis prepared for the proposed hotel located at 765 Airport Boulevard in Burlingame, California. The proposed hotel is a 132 room Hilton Garden Inn Hotel, a limited service hotel with limited meeting space and food service. Access to the site will be provided by one driveway on Airport Boulevard. The purpose of the analysis is to evaluate the impacts of the proposed hotel on the surrounding transportation system..The project impacts were evaluated using two methodologies, both based on standard traff'ic engineering practice. The first method is a straight forward sit� traffic impact analysis methodology where the project traffic is estimated by applying hotel trip generation rates and trip distribution assumptions. The project impacts are then evaluated by comparing the operations of the key intersections and freeway segments in the vicinity of the site for conditions both with and without the project. Level of service calculations are used to evaluate the roadway operations. The second method is the Land Use - Transportation Impact Analyzer for the Bayfront and Anza Areas (the Analyzer). The Analyzer was developed as a tool to evaluate the impacts of developments in the Bayfront and Anza areas of Burlingame on three key intersections. The Analyzer contains tables of capacity consumptions rates for ten development types (land uses) and six roadway configuration alternatives. Each table corresponds to one of the six subareas and to one of the three intersections for a total of 18 tables. The capacity consumption rates have trip generation and trip distribution assumptions incorporated into them. The key intersections and freeway segments in the vicinity of the site are: Key Intersections � . Bayshore Highway at US 101 Ramps* D Bayshore Highway at Airport Boulevard* Anza Boulevard at Airport Boulevard Airport Boulevard at Coyote Point Drive* �i � * Intersections included in the Land Use - Transportation Impdct Analyzer Fehr & Peers Associates 1 . L�1 �' D l' LI D CII J � J � �I 765 Airport Boulevard Limited Partnership February 14, 1997 Freeway Segments on US IOI Millbrae Avenue to Broadway Broadway to Peninsula Avenue Peninsula Avenue to SR 92 The operations of these facilities were evaluated during the time periods when the traffic on the surrounding roadways are highest, during the morning and evening commute periods, for the following scenarios: Scenario 1: Scenario 2: Scenario 3: Scenario 4: Existing Conditions - Existing volumes obtained from counts Background Conditions - Existing volumes plus traffic from approved but not yet constructed developments in the azea Project Conditions - Background volumes plus project-generated traffic for the proposed hotel Cumulative Conditions - Traffic volumes for buildout of the Anza area The project is anticipated to generate less than 300 peak-hour trips. Therefore, a San Mateo County Congestion Management Program (CMP) analysis is not required. However, this analysis does evaluate the project's impacts on the CMP facility i� the vicinity of the site, US 101. ] The existing conditions are described in Chapter 2. Background conditions are presented in Chapter 3. The process used to estimate the amount of traffic generated by the project and its � impacts on the surrounding roadway system are presented in Chapter 4. Chapter 5 presents the results of the analysis of cumulative conditions. Chapter 6 presents a summary of the analysis and the conclusions. � � � � � Fehr & Peers Associates 2 � J � � 765 Airport Boulevard Limited Partnership February 14, 1997 II. EXISTING CONDITIONS rj The existing transportation system serving the site comprises the roadway system, bicycle U facilities, and pedestrian facilities. There is no transit service providing direct access to the site. j � These components of the transportation system are described in this chapter. The cunent operating conditions of the intersections and freeway segments are also presented. A . Roadway System �, J The site is located on the north (bay) side of US 101 near the intersection of Anza Boulevard and Airport Boulevard (see Fi'gure 1). US 101 provides regional access to the site. It has four � travel lanes in each direction with auxiliary lanes on some segments. The interchanges that provide access and egress for the site are the Broadway, Anza Boulevard, Peninsula Avenue, • � and Poplar Avenue interchanges. The roadways providing local access are described below: � Air�ort Boulevard runs primarily in an east-west direction from Bayshore Highway, at ] Bayside Park, to Coyote Point Drive. The width of this roadway varies from two to four lanes. Near the site it is four lanes wide with raised medians. It provides access to office buildings, �� hotels, and remote airport parking lots. Direct access to the project site is provided by one driveway on this roadway. �. Bayshore Hi ng wav is a four-lane roadway that parallels US 101 north (west) of the site. It is -� , primarily lined with hotel, office, and light industrial uses. Anza Boulevard is a two to four-lane roadway that connects Airport Boulevard to northbound US 101. Co,yote Point Drive is a four-lane roadway that intersects Airport Boulevard at the US 101/Peninsula Avenue interchange. It provides access to the Coyote Point County Recreation Area and the City of San Mateo Tom Fry Golf Course. � Fehr & Peers Associates 3 � � � � � � � ..J � � � � � � � J � Not to Scale FIGURE 1 005-17-02 SITE LOCATION MAP I I I� Fehr &�eers Assodates, �nc Transportauon Consultants �' � � L�J CI� CII � � � � � 765 Airport Boulevard Limited Partnership February 14, 1997 B . Bicycle Facilities Bicycle facilities include bike paths, bike lanes, and bike routes. Bike paths are paved pathways that are separated from roadways used by motor vehicles by space or physical barriers. Bike.lanes are lanes on the outside edge of roadways that are for the exclusive use of bicycles and are so designated with special signing and pavement markings. Bike routes are roadways designated with bike route signs only. The bicycle facility in the vicinity of the site is the Bay Trail, a bike path along the shore of the San Francisco Bay. � C . Pedestrian Facilities Pedestrian facilities include sidewalks, pedestrian signals at signalized intersections, and ramps for people with disabilities. Sidewalks are located on both sides of Airport Boulevard in the vicinity of the site. D . Existing Roadway Operations , The operations of roadway facilities are described with the term level of service. Level of service is a qualitative description of traffic flow based on such factors as speed, travel time, delay, and freedom to maneuver. Six levels of service are defined for each type of facility ranging from Level A, the best operating conditions, to Level F, the worst operating conditions. Level of Service (LOS) E corresponds to operations "at-capacity." When volumes exceed capacity, stop-and-go-conditions result and operations are designated as LOS F. Different criteria are used to assess operating conditions for different types of facilities. In the ] Anza Area of Burlingame, the operations of signalized intersections are evaluated with volume-to-capacity ratios (V/C - the volume of traffic entering the intersection divided by the � capacity of the intersection, where the capacity is based on the numbers and types of lanes). Level of service definitions for signalized intersections and the corresponding ranges of V/Cs � � are presented in Table l. Fehr & Peers Associates 5 � Table 1 LEVEL OF SERVICE DEFINITIONS FOR SIGNALIZED INTERSECTIONS Capacity Volume-to-Capacity Consumption Ratio Percentages LOS Description of Operations (Based on LOS E) (Based on LOS C) Uncongested operations. Turning A movements are easily made and all queues . 0.00 - 0.59 0- 74% clear in a single signal cycle. Operations with very light congestion. � B Drivers begin to feel somewhat restricted as 0.60 - 0.69 75 - 86% vehicles fill-up an occasional signal phase. Stable operations with light congestion. C Backups may develop behind turning 0.70 - 0.79 87 - 99% vehicles. Drivers may have to wait through a signal cycle on heaviest approaches. Operations approaching unstable flow with signi�cant congestion. Backups develop D on busiest intersection approaches during 0.80 - 0.89 100 - 111% short peaks. No long-standing queues are formed. Unstable operations with severe E congestion. Long standing queues 0.90 - 0.99 112 - 124% develop on critical approaches where vehicles wait through several signal cycles. Traffic demand exceeds the capacity of the F intersection causing stop-and-go operations 1.00 + 125% + with excessive delays. ' Source: Transportation Research Board Circular 212, Interim Materials on Highway Capacity, January 1980. 0 � � � � � � � �� � � � � 765 Airport Boulevard Limited Partnership February 14, 1997 The Land Use - Transportation Impact Analyzer for the Bayfront and Anza Areas (Analyzer) is an analysis tool that evaluates the amount of intersection capacity, based on LOS C, consumed by a variety of development types. The capacity consumption percentages for the various levels, with "capacity" defined as LOS C operations as opposed to LOS E, are also presented in Table 1. �� Unsignalized intersections are evaluated based on the average total delay in seconds per vehicle. Total delay is defined as the time elapsed from when a vehicle stops at the end of the queue at the intersection until it enters the intersection (passes the stop bar). Level of service definitions for unsignalized intersections are presented in Table 2. According to the 1994 Highway Capacity Manual, the primary criterion for freeway operations is the density of the traffic flow expressed in passenger cars per mile per lane. Density information for US 101 near the site is not available. Therefore, V/Cs were used in this analysis. Level of service definitions for freeway segments are presented in Table 3. 1. Existin� Volumes Manual turning movement counts for the four key intersections during the morning peak period (7:00 am to 9:00 am) and the evening peak period (4:00 pm to 6:00 pm) were obtained from � the report entitled Traffic Impact Study for 577 Airport Boulevard, by Fehr & Peers Associates Inc., dated January 8, 1997. The highest one-hour volumes from these counts are presented on � Figure 2. The am and pm peak-hour volumes for the freeway segments were obtained by applying growth rates to 1990 freeway counts. � � � � 2 Existin� Lane Confi�urations The existing lane configurations for the key intersections and freeway segments were observed during a site visit. The intersection lane configurations comprise turn-lanes and through lanes. The freeway lane configurations comprise travel lanes. The intersection lane configurations are presented on Figure 3. Fehr & Peers Associates � � � , � Table 2 LEVEL OF SERVICE DEFINITIONS FOR UNSIGNALIZED INTERSECTIONS I�J � Average Total Delay LOS Description of Operations (sec/veh) A Little or no delay 0- 5.0 B Short traf�c delays 5.1 - 10.0 C Average tr�c delays . 10.1 - 20.0 D Long tr�c delays 20.1 - 30.0 E Very long traffic delays 30.1 - 45.0 . F Extreme tr�c delays . 45.0 + � Source: Highway Capacity Manual, Special Report 209, Third Edition, Transportation Research Council. J � � J � � � � J � � � M� � � � � � � � � � � � � � � J � Table 3 LEVEL OF SERVICE DEFINITIONS FOR FREEWAY SEGMENTS Maximum Maximum LOS Description of Operations Densitya V/Cb A Free flow operations with average operating speeds at, or above, the speed limit. Vehicles are 10.0 0.283 unimpeded in their ability to maneuver. The effects of incidents are easily absorbed. B Free flow operations with average operating speeds at the speed limit. Ability to maneuver is 16.0 0.452 slightly restricted. Minor incidents cause some local deterioration in operations. C Stable operations with average operating speeds near the speed limit. Freedom to maneuver is 24.0 0.673 noticeably restricted. Minor incidents cause substantial local deterioration in service. D Speeds begin to decline slightly with increasing flows. Freedom to maneuver is more noticeably 32.0 0.849 restricted. Minor incidents create queuing. E Operations at capacity. Vehicle spacing causes � little room to maneuver but speeds exceed 50 mph. Any disruption to the traffic stream can cause a wave of delay that propagates throughout the 43.4 1.000 upstream traffic flow. Minor incidents cause � serious breakdown of service with extensive queuing. Maneuver ability is extremely limited. F Operations with breakdowns in vehicle flow. Volumes exceed capacity causing bottlenecks and varies n/a queue formation. a Maximum density is expressed in passenger cars per mile per lane. b Volume-to-Capacity ratio. Source: Highway Capacity Manual, Special Report 209, Third Edition, Transportation Research Council. m � Not to Scale FIGURE 2 EXISTING � Fehr&PeersAssodates.�nc PEAK HOUR VOLUMES TransportaUonConsulrants 005-12-02 _ � � � � � � � � � LJ J L�J A Not to Scate FIGURE 3 � 005•13-02 EXISTING INTERSECTION III � Fehr&PeersAssodates,�nc. LANE CONFIGURATIONS TransporouonConsultants � � � � � 765 Airport Boulevard Limited Partnership February 14, 1997 3. Existin� Levels of Service Level of service calculations were conducted incorporating the peak-hour volumes and lane configurations. The calculation sheets are presented in Appendix A. The results of the intersection level of service calculations showing V/Cs, delays, and LOSs are presented in Table 4. The intersection levels of service were also evaluated using the method in the Analyzer. The capacity consumption percentages and the percentages of reserve capacity, � based on capacity at Level of Service C, were estimated by inputting the count volumes into the Analyzer worksheets (see Appendix B). The results are presented in Table 5. � � � � � � � All of the signalized intersections are operating at Level of Service A during both the morning and evening peak hours according to the standard level of service calculations and the results of the Analyzer. There is currently little or no delay at these intersections. The unsignalized intersection of Airport Boulevard and Coyote Point Drive is operating at an overall LOS A during both peak hours. The results for the freeway segments are presented in Table 6. The freeway operations were evaluated by comparing the volume of vehicles on each segment to the segment's capacity based on 2,000 vehicles per hour per lane, as required by the San Mateo County Congestion Management Program (CMP). All of the segments are currently operating at LOS F during the peak hour based on these calculations. The latest update of the Hightivay Capacity Manual shows a freeway capacity of 2,300 vehicles per hour per lane. Using this capacity, all of the segments would be evaluated as operating at LOS E. The CMP Level of Service Standards for these segments are: Millbrae to Broadway LOS E Broadway to Peninsula LOS E Peninsula to SR 92 LOS F � According to the CMP's methodology, the two northerly segments are exceeding their LOS Standard. The methodology with the higher capacities results in no LOS Standard violations. Fehr & Peers Associates 1 Z � u u t� t� t� u u u u u u u u u u u u u u Table 4 EXISTING INTERSECTION LEVELS OF SERVICE a AM Peak Hour PM Peak Hour V/C Ratio b V/C Ratio b Intersection Location Control Type D lay � LOS d D lay � LOS d Bayshore Hwy./LJS 101 Ramps Signalized 0.47 A 0.52 A Bayshore Hwy./Airport Blvd. Signalized 0.59 A 0.51 A Airport Blvd./Anza Ave. Signalized 0.41 A 0.49 A Airport Blvd/Coyote Point Dr. Stop Sign SB Left/Right (Stop Sign Controlled) 3.5 A 5.3 B EB Left , 2.8 A� 2.6 A Intersection 2.2 A 3.8 A a For signalized intersections, the LOS calculations were performed with NCAP (Intersection Capacity Analysis Package) based on the Transportation Research Board's Circular 212. For unsignalized intersections, the LOS calculations were performed with HCS94 (Highway Capacity Software) based on the 1994 Highway Capacity Manual. b V/C Ratio: Volume-to-Capacity Ratio at signalized intersections. � Delay: Average delay, in seconds per vehicle, for the specified movement(s) at stop sign controlled intersections. `� LOS: Level of Service. Source: Fehr & Peers Associates, Inc. � � � � Table 5 EXISTING INTERSECTION OPERATIONS USING THE ANALYZER � � � � � � Capacity Percentage Time Consumption Reserve Intersection Period Percentage Capacity LOS AM 57% 43% A Bayshore Highway/US 101 Ramps PM 63% 37% A AM 63% 37% A Bayshore Highway/Airport Blvd. , PM 60% 40% A AM 45% 55% A Anza Blvd./Airport Blvd. PM 56% 44% A AM 45% 55% A Airport Blvd./Coyote Point Dr. PM 63% 37% A � Source: Fehr & Peers Associates; Inc. � � J � � � J � � � [—] � U U L___1 U U l_J U U �J �___J U U U U U U U L._._.1 a Based on the CMP's capacity of 2,000 vehicles per lane per hour. The 1994 Highway Capacity Manual maintains a freeway capacity of 2,300 vehicles per lane per hour. Source: Fehr & Peers Associates, Inc. Table 6 EXISTING FREEWAY SEGMENT VOLUME-TO-CAPACITY RATIOS � � � � � � � � � � J �l J � � � � � � 765 Airport Boulevard Limited Partnership February 14, 1997 III. BACKGROUND CONDITIONS The impacts of the project are identiiied by comparing the operations of the roadway system under future conditions with the project to future conditions without the project. Conditions without the project are also called background conditions. Traffic volumes anticipated to be on the roadways under background conditions comprise existing volumes plus traffic from approved, but not yet completed developments in the area. The process used to estimate background traffic volumes, and the results of the level of service calculations for background conditions, are presented in this chapter. A . Background Traffic Traffic volumes for background conditions comprise existing volumes and traffic projections for all approved developments. According. to the City of Burlingame Planning Department staff, there are two approved developments, two restaurants totaling 27,000 s.f. located at 620 Airport Boulevard. These restaurants are projected to generate 25 am peak-hour trips (23 inbound and 2 outbound) and 186 pm peak-hour trips (130 inbound and 56 outbound). The trip generation estimates are presented in Table 7. Using the rates in the Analyzer, the restaurants would be projected to generate 99 pm peak-hour trips (62 inbound and 37 outbound). These. traffic volumes were assigned to the roadway system based on the trip distribution patterns for restaurants included in the manual for the Land Use - Transportation Impact Analyzer and were added to the existing volumes. The resulting volumes are presented on Figure 4. There is also a pending development in the vicinity of the site, the 121,000 s.f office building located at 577 Airport Boulevard. This development may be approved in the near future. Therefore, a second background condition was evaluated including this development. Fehr & Peers Associates 16 � U U [—] U �J U L-1 U L____) l�J U U L—� U U U U l—J U Table 7 APPROVED AND PENDING DEVELOPMENT TRIP GENERATION ESTIMATES AM Peak-Hour Trips PM Peak-Hour Trips Development Location In Out Total In Out Total Appr� 620 Airport Boulevard 23 2 25 130 56 186 27,000 s.f. Restaurant Pendin 577 Airport Boulevard 166 20 186 30 144 174 121,000 s.f. Office � � 0 0 � � � � � 0 0 0 LJ Not to Scale FIGURE 4 � 005-14-02 BACKGROUND PEAK HOUR VOLUMES (without 577 Airport Boulevard) �Fehr & Peers Hssodates, Irx. hansportation Consuttana � � � 765 Airport Boulevard Limited Partnership February 14, 1997 The office development is estimated to generate 186 am peak-hour trips (166 inbound and 20 outbound) and 174 pm peak-hour trips (30 inbound and 144 outbound). The trip generation estimates are presented in Table 7. The estimated number of pm peak-hour trips using the Analyzer ratel is very similar, 182 trips (49 inbound and 133 outbound). � The trip assignment for the office development was obtained from its traffic analysis. The "background" volumes with this pending project are presented on Figure 5. J B . Background Roadway Operations `-' . The impacts of the approved developments and the approved plus pending developments on � the surrounding roadway system were evaluated with level of service calculations. The results for the key intersections are presented in Table 8. The signalized intersections are projected to operate at LOS A with the exception of Bayshore Highway at Airport Boulevard during the ] AM peak hour with traffic from pending developments which is projected to operate at LOS B. The intersection of Airport Boulevard and Coyote Point Drive is projected to operate at LOS A ] during both peak hours. � � J The impacts of approved and pending developments on three of the key intersections during the pm peak hour were also estimated using the Land Use - Transportation Impact Analyzer° directly. (The intersection of Airport Boulevard and Anza Boulevard is not included in the Analyzer). First, the sizes of the restaurants (27,000 square feet) were converted to acres, as the Analyzer capacity consumption rates are based on acres of development. For restaurants, ] the Analyzer uses 6,500 square feet of restaurant space per acre. Therefore, the equivalent size of the restaurants is 4.15 acres. Next, the subarea location of the restaurants and the appropriate Analyzer tables were identified. The restaurants are located in Subarea 5; therefore Tables M, N, and O were selected. The capacity consumption rates corresponding to restaurant land use and the Anza extension roadway network configuration were applied to the 4.15 acres to obtain the percent of capacity consumed at the three intersections. The results are 1 59 trips per 39,200 s.f. of office space with 16 inbound and 43 outbound. � Fehr & Peers Associates �9 � � � 0 � � � � � � � � � � Not to Scale ] FIGURE 5 005-, ��2 BACKGROUND PEAK HOUR VOLUMES (with 577 Airport Boulevard) �Fehr & Peers Assodates. Inc Transportauon Consuttants � u u u u u u u u u u u u u u t-.� u u u u Table 8 BACKGROUND INTERSECTION LEVELS OF SERVICEe Approved Approved and Developments Pending Developments Control Peak V/Cb or V/Cb or Intersection Type Hour Delay� LOSd Delay� LOSd Bayshore Hwy/LTS 101 Ramps Signal AM 0.47 A 0.50 A PM 0.54 A 0.54 A Bayshore Hwy/Airport Blvd. Signal AM 0.59 A 0.62 B PM 0.51 A 0.53 A Airport Blvd/Anza Avenue Signal AM 0.42 A 0.45 A . PM 0.52 A 0.57 A Airport Blvd/Coyote Point Drive � SB LeftJRight Stop 3.5 A 3.6 A EB Left Sign AM 2.8 A. 2.3 A Intersection � 2.2 A 2.4 A SB Left/Right 5.6 B 6.2 B EB I.eft Stop PM 2.8 A 2.2 A Intersection Sign 4.0 A 4.4 A a For signalized intersections, the LOS calculations were performed with NCAP (Intersection Capacity Analysis Package) based on the Transportation Reseazch Board's Circular 212. For unsignalized intersections, the LOS calculations were performed with HCS94 (Highway Capacity Softwaze) based on the 1994 Highway Capacity Manual. � b V/C Ratio: Volume-to-Capacity Ratio at signalized intersections. . c Delay: Average delay, in seconds per vehicle, for the speci�ed movement(s) at stop sign controlled intersections. d LOS: Level of Service. Source: Fehr & Peers Associates, Inc. � ] 765 Airport Boulevard Limited Parmership February 14, 1997 � presented in Table 9. The Analyzer predicts that the restaurants would consume 0.5 to 1.5 percent of the intersection capacities during the pm peak hour. � This process was repeated for the pending office development. First, the size of the office � development was converted to acres based on the Analyzer's assumption of 39,200 square feet � � of office space per acre (FAR - floor area ratio- of 0.90). The proposed size of 121,000 s.f. is equivalent to 3.09 acres. The project is located in Subarea 6; therefore Tables P, Q, and R were selected. Using these tables, the office development is projected to consume 0.6 percent of the capacity of the Bayshore Highway/US 101 Ramps intersection, 1.4 percent of the capacity of the Bayshore Highway/Airport Boulevard intersection, and 6.7 percent of the capacity of the Airport Boulevard/Coyote Point Drive intersection. The total projected consumed cap�cities of the three intersections are 64.1 percent, 62.2 percent, and 71.2 percent, respectively, all withiri the LOS A range. The results are presented in Table 9. � The results for the freeway segments are presented in Table 10. The freeway segments are � projected to operate at LOS F using the CMP capacity of 2,000 vehicles per hour per lane. The two northerly segments are projected to violate their CMP LOS Standard. Using a capacity of � 2,300 vehicles per hour per lane, no CMP violations would occur. � J � � � � � � J � Fehr & Peers Associates 22 � � � Table 9 BACKGROUND INTERSECTION OPERATIONS USING THE ANALYZER (PM PEAK HOUR) �J u � Airport/Coyote Bayshore/US 101 Bayshore/Airport Point Existing Consumed Capacity 63°Io 60% 63°Io Capacity Consumed by Approved 0.5 °Io . 0.8 °Io i.5% Developments Capacity Consumed by Pending 0.6% 1.4% 6.7% Developments Tota1 Consumed Capacity � 64.1 % 62.2% � 71.2% Level of Service A A A � Source: Fehr & Peers Associates, Inc. � �1 � � � � � � � � u�_� u u u u u u u u�� u u u u u u u u Table 10 BACKGROUND FREEWAY SEGMENT VOLUME-TO-CAPACITY RATIOS a Approved Development Approved and Pending Pe� Developments Freeway Segment Direction Hour Volume V/C LOS Volume V/C LOS AM 8,788 1.10 F 8,794 1.10 F NB PM 8,658 1.08 F 8,701 1.09 F Millbrae Avenue to Broadway AM 8,619 1.08 F 8,669 1.08 F SB PM 8,000 1.00 F 8,009 1.00 F AM 8,965 1.12 F 8,973 1.12 F NB PM 8,745 1.09 F 8,804 1.10 F Broadway to Peninsula Avenue AM 8,494 1.06 F 8,494 1.06 F SB pM 8,035 1.00 F 8,042 1.01 F AM 9,104 1.14 F 9,169 1.15 F NB pM 9,061 1.13 F 9,073 1.13 F Peninsula Avenue to SR 92 - AM 8,869 1.11 F 8,877 1.11 F SB PM 8,435 1.05 F 8,491 1.06 F a Based on the CMP's capacity of 2,000 vehicles per lane per hour. The 1994 Highway Capacity Manual maintains a freeway capacity of 2,300 vehicles per lane per hour. Source: Fehr & Peers Associates,Inc. . � � � � � 765 Airport Boulevard Limited Parmership February 14, 1997 IV. PROJECT CONDITIONS The process used to estimate the amount of traffic added to the surrounding roadway system by the proposed hotel and the impacts of that traffic are discussed in this chapter. Two methods, both based on standard traffic engineering practice, were used to evaluate project impacts. The first method is a straight forward site traffic impact analysis methodology where the project traffic is estimated by applying hotel trip generation rates and trip distribution � assumptions. The project impacts are then evaluated by comparing the operations of the key intersections and freeway segments in the vicinity of the site for conditions both with and � � � � � without the project. The second method is the Land Use - Transportation Impact Analyzer for the Bayfront and Anza Areas (the Analyzer) and its tables of capacity consumptions rates which have trip generation and trip distribution assumptions incorporated into them. Both methods yield intersection levels of service. The only vaziation is that the Analyzer's consumptions rates are based on capacity defined as Level of Service C while the standard intersection level of service calculations are based on capacity defined as Level of Service E. A . Project Traffic � The amount of traffic added to a roadway system by a proposed project is estimated using a three-step process: (1) trip generation, (2) trip distribution, and (3) trip assignment. In the firsY step, the amount of traffic entering and exiting the site is estimated by applying appropriate trip � generation rates to the size of development. Trip generation rates for business hotel from the Institute of Transportation Engineers (ITE) Trip Generation publication, were used to estimate ] the amount of traffic generated by the proposed Hilton Garden Inn Hotel at 765 Airport Boulevard. These rates are based on a compilation of trip generation surveys conducted at �J � � � hotels throughout the United States. The rates are 0.58 trips per room during the am peak hour (59 percent entering and 41 percent exiting) and 0.62 trips per room during the pm peak hour (60 percent entering and 40 percent exiting). The project is estimated to generate 77 am peak-hour trips (45 inbound and 32 Fehr & Peers Associates 25 � � � � � � � � � � � � � � � 765 Airport Boulevard Limited Parrnership February 14, 1997 outbound) and 82 pm peak-hour trips (49 inbound and 33 outbound). The trip generation estimates are presented in Table 11. The estimated number of pm peak-hour trips using the Analyzer rate2 is lower, 58 trips (32 inbound and 26 outbound). The Analyzer rate is based on surveys of large hotels in the area with a high percent of guests using shuttle service. It should be noted that the project will also provide shuttle service. Thus the estimates in Table 11 are conservative. The next step is to determine the amount of traffic that will be approaching and departing the site from each direction. The trip distribution pattern was developed based on survey results of hotels in the area contained� in the background data for the Analyzer. The general directions of 'approach and departure are: To/From the North 70°10 To/From the South 20% To/From the West 10% The trip distribution pattern with the� percentages on the individual roadways was developed. The distribution of inbound project trips is shown on Figure 6. The outbound distribution pattern is shown on Figure 7. The project trips were assigned to the roadways and intersection turning movements. The project traffic volumes are presented on Figure 8. B . Project Roadway Operations Level of service calculations were performed to evaluate the operating conditions of the roadway facilities under project conditions. The results for the intersections for both background conditions and "with project" conditions, and the changes in V/C and delay due to � the project traffic, are presented in Tables 12 and 13. All of the signalized intersections are projected to operate at LOS A with the exception of Bayshore Highway and Airport Boulevard � � � 2 29 trips per 65 rooms with 16 inbound and 13 outbound. Fehr & Peers Associates Z6 � Table 11 PROJECT TRIP GENERATION J J J � � � � � J � � �1 J � � � � � � AM Peak Hour I'M Peak Hour Item In Out Total In Out Total Business Hotel Trip Generation Rates 0.34 0.24 0.58 0.37 0.25 0.62 (trips per occupied room)1 � Trip Generation Estimates 45 32 77 49 33 82 (132 rooms) Source: Trip Generation, Sth Edition, Institute of Transportation Engineers, 1991. 1 A conservative estimate of 100 percent occupancy was assumed. '� ,� � � � � � � � � � � From US 101 North Broadway Off-Ramp US 101 South Anza Off-Ramp Peninsula Avenue Bayshore Highway Broadway Total � Percentage of � Project Trips �.� 35% �~ 20% 3% 35% 7% 100'/0 .� ���� 41��/� X; � 3% ,� j ,. `� �.��. , - 1 ,�'^� ,x C'. t :; :�. J �`� :J , . ry,: o � K 5 /o .35°/Q - _"��^ t / ;/ j ' �� �7% j :� .. ; I ` � 77°��0 �� � '� �� �`�4',� � ; : . �ZQ% �'� ` t � � -. �. . � , . . , . . _ � . . . r ■ vl�v� � $Ite # . , � ; 3% � j �.:. � � � , . �, - � . , . ............ . ._..__ � . � _._.____ _ � .iir�s�rt E?i.•.: . f -- ;- � � J � i i 3% ✓ F a .;, � � �_ � _ .. Not to Scale J FIGURE 6 005-21-02 PROJECT TRIP DISTRIBUTION III � Fehr&PeersAssodates,�nc INBOUND TRIPS T2nsporfauonConwttan6 � � . � � To US 101 North � Percentage of Project Trips 28% US 101 South 20% Poplar On-Ramp 10% Broadway On-Ramp 10% JPeninsula Avenue 3% Bayshore Highway 42°/a � Broadway 7% Total 100% J � � � � � � � � � � � � �f � i`% 1 ��; 1 � , �. 2$% �`�, t , `�' ,��;� ,;; ��`��, � r` 42% , 1 _f : 3 y � � �700 ,. � ��. i �" � i" o ; 59°� : ��r;,C,� i � ,s�,o �� �. � � . k =;Project � i Site ' , .� � �� 13% i ; ; � r � ; -- � �. (! ;� :,': r ,� , ;,! � f ', � � �� ` ,. .-.. -- --- ` - � ;'. � � (� ,......__ . � i a•iir�:�t�~i �zi�-.l. . � - -- - � t � 13% ;, f �.� �� .+ `s .. . . �n � O . N Not to Scale FIGURE 7 005-22-02 PROJECT TRIP DISTRIBUTION III � Fehr&PeersAssodates,�nc OUTBOUND TRIPS T`�"�°`�°°"`°"���"� � Not to Scale FIGURE 8 PROJECT TRIP . � Fehr&PeersAssadates.�nc ASSIGNMENTS T`a"�°�°°" `°"Su'�"� 005-15-02 U U U U U U U U L-J U [�J U U U U L-_J U U U Table 12 BACKGROUND I AND PROJECT INTERSECTION LEVELS OF SERVICE Background (Approved Project Change Development) Control Peak V/C or V/C or V/C or Intersection Type Hour Delay LOS Delay LOS Delay LOS Bayshore Hwy/US 101 Ramps Signal AM 0.47 A-- 0.49 A +0.02 -- PM 0.54 A 0.55 A +0.01 -- Bayshore Hwy/Airport Blvd. Signal AM 0.59 A 0.60 B +0.01 A to B PM 0.51 A 0.52 A +0.01 -- Airport Blvd/Anza Avenue Signal AM 0.42 A 0.43 A +0.01 -- PM 0.52 A 0.55 � A +0.03 -- Airport Blvd/Coyote Point Drive -- SB Left/Right Stop 3.5 A 3.5 A -- -- EB Left Sign AM 2.8 A 2.8 A -- -- Intersection 2.2 A 2.3 A +0.1 SB Left/Right 5.6 B 5.6 B -- -- EB Left Stop PM 2.8 A 2.8 A -- -- Intersection Sign 4.0 A 4.0 A -- -- Source: Fehr & Peers Associates, Inc. U U U U U U l__—J L—J U U U U U U U U U U U 0 Table 13 BACKGROUND II AND PROJECT INTERSECTION LEVELS OF SERVICE Background (Approved + project Change . Pending Developments) Control Peak V/C or V/C or V/C or Intersection Type Hour Delay LOS Delay LOS Delay LOS Bayshore Hwy/US 101 Ramps Signal AM 0.50 A 0.52 A +0.02 -- PM 0.54 A 0.57 A +0.03 -- Bayshore Hwy/Airport Blvd. Signal AM 0..63 S 0.64 B +0.01 -- PM 0.53 A 0.53 A -- -- Airport Blvd/Anza Avenue Signal AM 0.45 A 0.46 � A +0.01 -- PM 0.57 A 0.60 A +0.03 -- Airport BIvdlCoyote Point Drive '- SB Left/Right Stop 3.6 A 3.6 A -- -- EB Left Sign AM 2.9 A 2.9 A -- -- Intersection A 2.4 A -- SB Left/Right 6.2 B 6.2 B -- -- EB Left Stop PM 2.8 A 2.8 A -- -- Intersection Sign 4.4 A 4.4 A -- -- Source: Fehr & Peers Associates, Inc. � � � � � � � � � � � � � � � � � � 765 Airport Boulevard Limited Partnership February 14, 1997 which is projected to operate at LOS B during the am peak hour. The proposed project is estimated to increase the volume-to-capaciry ratios by 0.00 to 0.03, depending on which background condition is used as a base. The intersection of Airport Boulevard and Coyote Point Drive is projected to operate at LOS A during both peak hours with the addition of project traffic. The impacts of the project on the three key intersections in the Analyzer for pm peak hour conditions were also estimated using the Land Use - Transportation ImpactAnalyzer directly. The process used to estimate the amount of intersection capacity consumed .by the developments under background conditions was followed for the proposed hotel project. The 132 room hotel is equivalent to 2.03 acres using the Analyzer's density assumption of 65 rooms to the acre. The hotel is located in Subarea 4 corresponding to Tables J, K, and L. Using these tables, the proposed hotel is projected to consume 0.6 percent of the capacity of the Bayshore Highway/US 101 ramps intersection, 0.2 percent of the capacity of the Bayshore Highway/Airport Boulevard intersection, and 0.4 percent of the capacity of the Airport Boulevard/Coyote Point Drive intersection. The total projected consumed capacities of the three intersections are 64.7 percent, 62.4 percent, and 71.6 percent, all within the LOS A range. The results are presented in Table 14. Based on these results, the project would not cause a significant adverse impact on the intersections. Therefore, no mitigation measures would be necessary. The freeway segment results are presented in Table 15. The project is estimated to add 3 to 17 vehicles per hour during the morning and evening peak hours to the subject segments. The freeway segments are projected to operate at LOS F under background plus project conditions using the CMP capacity of 2,000 vehicles per hour per lane. The two northerly segments are projected to violate their CMP LOS Standard. Using a capacity of 2,300 vehicles per hour per lane, no CMP violations would occur. The addition of project traffic would have a negligible effect on freeway operations. Fehr & Peers Associates 33 � � � � Table 14 ] PROJECT INTERSECTION OPERATIONS USING THE ANALYZER (PM PEAK HOUR) � � � � � � � � � � � � � �� Airport/Coyote Bayshore/US 101 Bayshore/Airport Point Existing Consumed Capaciry 63% 60% 63% Capacity Consumed by Approved � 0.5% 0.8% 1.5% Developments Capacity Consumed by Pending 0.6% 1.4% 6.7% Developments Capacity Consumed by Project 0.6°10 0.2°Io 0.4% Total Consumed Capacity 64.7°Io 62.4% 71.6% Level of Service A A A Source: Fehr & Peers Associates, Inc. � u u u u u u u u u u u u u u u u u u � Table 15 BACKGROUND AND PROJECT FREEWAY SEGMENT VOLUME-TO-CAPACITY RATIOS a Background I Background II Background II Changes (Approved (Approved Plus Plus Project Developments) Pending Pe� Developments). Freeway Segment Direction Hour Volume V/C LOS Volume V/C LOS Volume V/C LOS Volume V/C AM 8,788 1.10 F 8,794 1.10 F 8,803 1.10 F 9 0.00 NB Millbrae Avenue PM 8,658 1.08 F 8,701 1.09 F 8,710 1.09 F 9 0.00 to Broadway AM 8,619 1.08 F 8,669 1.08 F 8,685 1.09 F 16 0.01 SB PM g,000 1.00 F 8,009 1.00 F 8,026 1.00 F 17 0.00 AM 8,965 1.12 F 8,973 1.12 F 8,982 1.12 F 9 0.00 NB Broadway to PM 8,745 1.09 F 8,804 1.10 F 8,814 1.10 F 10 0.00 Peninsula Avenue � 8,494 1.06 F 8,494 1.06 F 8,497 1.06 F 3 0.00 SB PM 8,035 1.00 F 8,042 1.01 F._ 8,047 1.01 F 3 0.00 AM 9,104 1.14 F 9,169 1.1 S F 9,17 8 1.15 F 9 0.00 NB pM 9,061 1.13 F 9,073 1.13 F 9,083 1.14 F 10 0.01 Peninsula Avenue to SR 92 AM 8,869 1.11 F 8,877 1.11 F 8,883 1.11 F 6 0.00 SB PM 8,435 1.05 F 8,491 1.06 F 8,498 1.06 F 7 0.00 a �ased on the CMP's capacity of 2,000 vehicles per lane per hour. The 1994 Highway Capacity Manual maintains a freeway capacity of 2,300 ve�icles per lane per hour. � � � 5ource: Fehr & Peers Associates, Inc. � � � � � � � � � _l 765 Airport Boulevard Limited Partnership February 14, 1997 V. CUMULATIVE CONDITIONS Cumulative conditions are the projected conditions with cumulative development, or buildout, of the surrounding area. There are several vacant and underutilized parcels in the Anza Area. The Land Use - Transportation Impact Analyzer for the Bayfront and Anza Areas was used to estimate the impacts of developing those parcels on three of the key intersections. A . Cumulative Development The locations of the vacant and underutilized parcels are shown on the map on Figure�9. The project site is Parcel B. Table 16 presents a description of the existing uses, land use designations, and sizes of these parcels. B . Cumulative Roadway Operations The impacts of building out these parcels was estimated by using the Analyzer to first determine the amount of capacity consumed by the future uses. For parcels that had more than one designation, the highest trip generating use was selected. Hotel was selected when the ] designation was restaurant or hotel. The amount of capacity consumed by the existin� uses ,, was estimated and subtracted to obtain the net capacity consumed by each parcel. The � � � _r � � � � calculations are presented in Table 17. The total capacity consumed at each intersection is presented in Table 18. The results indicate that sufficient capacity is available at the intersections of Bayshore Highway and US 101 Ramps and at Bayshore Highway and Airport Boulevard but not at Airport Boulevard and Coyote Point Drive to accommodate buildout of the area. Therefore, cumulative development will have a significant adverse impact on the intersection of Airport Boulevard and Coyote Point Drive. Traffic may divert from the intersection of Airport Boulevard and Coyote Point Drive and use other routes to the Bayfront and Anza Areas thus improving the operations of this intersection over what is reported. The recommended mitigation measure is to construct improvements to the intersection with buildout of the area. Fehr & Peers Associates 36 � � N � Not to Scale � FIGURE 9 VACANT AND UNDER-UTILIZED � Fehr&PeersAssodag�s,�nc PARCELS IN THE PROJECT AREA TransportauonConsuirants 012•11-Ot . � � J � � � � � � � J � � � Table 16 VACANT AND UNDERUTILIZED PARCELS Land-Use Size Parcel Existing Use Designation (in Acres) B Vacant HoteUMotel � 2.038 ac C Airport Parking HoteUMotel 2.044 ac D Airport Parking RestaurantlHotel 2.906 ac E Airport Parking Restaurant/Hotel 1.240 ac F Airport Parking Restaurant/Hotel 3.099 ac ; G Airport Parking Restaurant/Hotel 3.278 ac M,N Drive-in Theater ' Office 15.957 ac 16 Vacant Restaurant/Hotel 5.175 ac 17 Vacant Restaurant/Hotel 1.352 ac 18 Vacant RestaurantlHotel 2.736 ac 19,20 Vacant Hotels/Motels 7.84 ac Source: City of Burlingame Planning Department � � '� � � � � � � � � J Table 17 INTERSECTION CAPACITY CONSUMPTION RATES FOR CUMULATIVE CONDITIONS Capacity Consumption Percentages Future Existing .. Intersection Parcel Development Use Net Bayshore Hwy./US 101 Ramps B 0.57% 0.00% 0.57°Io C 0.57% 0.06% 0.51 °lo D 0.81% 0.09% 0.72% E 0.40% 0.02% 0.3 8% F 0.99% 0.06% 0.93% G 1.05% 0.07% 0.98% M,N 3.03% 0.00% 3.03% 16 1.55% 0.00% 1.55% 17 0.41% 0.00% 0.41% 18 0.82% 0.00% 0.82% 19,20 2.35% 0.00% 2.35% 12.55% 0.30% 12.25% Bayshore Hwy./Airport Blvd. B 0.20% 0.00% 0.20% C 0.20% 0.14% 0.06% D 0.29% 0.20% 0.09% E 0.14% 0.04% 0.10% F 0.34% 0.09% 0.25%' G 0.36% 0.10% 0.26% M,N 7.18% 0.00% . 7.18% 16 0.47% 0.00% 0.47% 17 0.12% 0.00% 0.12% 18 0.25% 0.00% 0.25% 19,20 0.71% 0.00% 0.71% 10.26% 0.57% 9�.69% B 0.45%a 0.00% 0.45% Airport Blvd./Coyote Point Drive C 0.45% 0.06% 0.39% D . 0.64% 0.09% 0.55% E 0.35% 0.12% 0.23% � F 0.87% 0.31 % 0.56% G 0.92% 0.33% 0.59% M,N 34.78% 0.00% 34.78% 16 2.28% 0.00% 2.28% 17 0.59% 0.00% 0:59% 18 1.20% 0.00% 1.20%a 19,20 12.89% 0.00% 12.89% - 55.42% 0.91% 54.51% Source: Fehr & Peers Associates, Inc. � Table 18 CUMULATIVE INTERSECTION OPERATIONS USING THE ANALYZER (PM PEAK HOUR) Airport/Coyote Bayshore/US 101 Bayshore/Airport Point Existing Consumed Capacity 63% 60°l0 63% Capacity Consumed by Approved 0.5°Io 0.8% 1.5% Developments � Capacity Consumed by Pending 0.6% 1.4% 6.7% Developments • Capacity Consumed by Vacand 12.2% 9.7% � 54.5% Underutilized Parcelsa Tota1 Consumed Capacity 76.3°Io 71.9% 125.7°10 Level of Service B A F a Proposed hotel development is Parcel B. Source: Fehr & Peers Associates, Inc. 0 � � � � J � � � � U � 765 Airport Boulevard Limited Partnership February 14, 1997 VI. SUMMARY AND CONCLUSIONS This report presented the results of the transportation impact analysis prepared for the proposed 132-room hotel located at 765 Airport Boulevard in Burlingame, California. The proposed hotel is projected to generate 77 am peak-hour trips and 82 pm peak-hour trips. The project impacts on the surrounding roadway system were evaluated using the standard site traffic impact analysis methodology and the Land Use - Transportation Impact Analyzer for the Bayfront and Anza Areas (Analyzer). The analysis evaluated the operations of the surrounding roadway system for the following scenarios: Scenario 1: Scenario 2: Scenario 3: Scenario 4: Existing Conditions - Existing volumes obtained from counts Background Conditions - Existing volumes plus traffic from approved but not yet constructed developments in the area Project Conditions - Background volumes plus project-generated traffic foa° the proposed hotel Cacmulative Conditions - Traffic volumes for buildout of the Anza area (using the Analyzer) A summary of the intersection level of service calculations is presented in Table 19. The intersections are projected to operate at good levels of service (LOS A and B) under all conditions evaluated for both peak hours. Therefore, the project will not have a significant adverse impact on the intersections and no mitigation �measures would be necessary. Three of the key intersections are included in the Land Use - Transportation Impact Analyzer (Analyzer). The Analyzer is a tool that calculates the amount of capacity consumed at these intersections by various types of developments located in the vicinity of the site. The Analyzer results are presented in Table 20. The three intersections are projected to operate with reserve capacities corresponding to LOS A under existing, background, and project conditions. Therefore, according to the Analyzer methodology, the project will not have a significant adverse impact on the intersections and no mitigation measures would be necessary. Fehr & Peers Associates `�� � u u u u u u u u u u u u u u � u u u u Table 19 INTERSECTION LEVELS OF SERVICE COMPARISON AM Peak Hour PM Peak Hour V/C Ratio V/C Ratio Intersection Location Control T e LOS or Dela LOS or Dela Bayshore Hwy/LTS 101 Ramps Signalized A 0.47 A 0.52 Bayshore Hwy/Airport Blvd/CJS 101 Ramps Signalized A 0.59 A 0.51 Airport Blvd/Anza Ave Signalized A 0.41 A 0.49 Existing Airport Blvd/Coyote Point Dr Stop Sign SB Left/Right (Stop Sign Controlled) A 3.5 B 5.3 EB Left A 2.8 A 2.6 Intersection A 2.2 A 3.8 Bayshore Hwy/CTS 101 Ramps Signalized A 0.47 A 0.54 Bayshore Hwy/Airport BIvcULTS 101 Ramps Signalized A 0.59 A 0.51 Airport Blvd/Anza Ave Signalized A 0.42 A 0.52 B ackground (Approved) Airport Blvd/Coyote Point Dr Stop Sign SB Left/Right (Stop Sign Controlled) A 3.5 B 5.6 EB Left A 2.8 A 2.8 Intersection A 2.2 A 4.0 Bayshore Hwy/LTS 101 Ramps Signalized A 0.50 A 0.54 Bayshore Hwy/Airport Blvd/LTS 101 Ramps Signalized B 0.63 A 0.53 Background Airport Blvd/Anza Ave Signalized A 0.45 A 0.57 (Approved + Pending) Airport Blvd/Coyote Point Dr Stop Sign SB Left/Right (Stop Sign Controlled) A 3.6 B 6.2 EB Left A 2.9 A 2.8 Intersection A 2.4 A 4.4 Bayshore Hwy/LTS 101 Ramps Signalized A 0.52 A 0.57 Bayshore Hwy/Airport Blvd/L1S 101 Ramps Signalized B 0.64 A 0.53 Existing + Airport Blvd/Anza Ave Signalized A 0.46 A 0.60 Approved +Pending + Project_ Airport Blvd/Coyote Point Dr Stop Sign SB Left/Right (Stop Sign Controlled) A 3.6 � B 6.2 EB Left A 2.9 A 2.8 Intersection A 2.4 A 4.4 Svurce: ��enr �c doeers �.ssc�c�aaes, �nc. � 0 Table 20 � 5UMMARY OF ANALYZER RESULTS - PM PEAK HOUR (CAPACITY CONSUMPTION PERCENTAGES AND LOSs) � � � � � � � � � D � � � � Bayshore/US 101 Bayshore/Airport Airport/Coyote Point % Capacity % Capacity % Capacity Scenario Consumed LOS Consumed LOS Consumed LOS Existing 63.0 A � 60.0 A 63.0 A Background (Approved) 63.5 A 60.8 A 64.5 A Background (Pending) 64.1 A 62.2 A 71.2 A Project 64.7 A' 62.4 A 71.6 A Cumulative (Buildout) 76.3 B 71.9 A 125.7 F D � ] � 765 Airport Boulevard Limited Partnership February 14,1997 � � � The Analyzer was also used to evaluate cumulative (buildout) conditions. One intersection, Airport Boulevard and Coyote Point Drive, is projected to operate at LOS F(capaciry exceeded by rnore than 125 percent). Cumulative development will have a significant adverse impact on this intersection. The recommended mitigation measure is to construct improvements to the intersection commensurate with buildout of the area. � The project is anticipated to generate less than 300 peak-hour trips. Therefore, a San Mateo County Congestion Management Program (CMP) analysis is not required. However, this analysis did evaluate the project's impacts on the CMP facility in the vicinity of the site, US ] 101. The results of the freeway segment analysis, based on volume-to-capacity ratios, are summarized in Table 21. In all cases, the volume-to-capacity ratio exceeds 1.00 which results �. in operations at LOS F. One of the segments, Peninsula to SR 92, has a LOS Standard of LOS F. The other two have LOS Standards of LOS E. Therefore, two of the segments are shown as � � �� � violating their LOS Standard. It should be noted that the volume-to-capacity ratios are based on using capacities of 2,000 vehicles per hour per.lane (vphpl). The latest update of the Highway Capacity Manual identifies the capacity of a freeway lane as 2,300 vphpl. Using the updated capacity figure, the segments would maintain their LOS Standards and no violations would occur. Until the CMP is updated in 1997, the official capacity is 2,000 vphpl. � Fehr & Peers Associates � ¢� � � O U C] C� CJ CU L-.=�J U U U U U �� C_J U �-J U U U Table 21 FREEWAY SEGMENT VOLUME-TO-CAPACITY RATIO COMPARISON a AM Peak Hour PM Peak Hour Freeway Segment . Southbound Northbound Southbound ' Northbound Volume v h V/C Ratio Volume v h V/C Ratio Volume v h VJC Ratio Volume v h V/C Ratio Millbrae Avenue to Broadway 8,614 1.08 8,788 1.10 7,972 1.00 8,646 1.08 Exisring Broadway to Peninsula 8,494 1.06 8,965 1.12 8,028 1.00 8,728 1.09 Avenue Peninsula Avenue to S.R. 92 8,868 1.11 9,094 1.14 8,408 1.05 9,016 1.13 Millbrae Avenue to Broadway 8,619 1.08 8,788 1.10 8,000 1.00 8,658 1.08 Background Broadway to Peninsula 8,494 1.06 8,965 1.12 8,035 1.00 8,745 1.09 (Approved) Avenue Peninsula Avenue to S.R. 92 8,869 1.11 9,104 1.14 8,435 1.05 9,061 1.13 Millbrae Avenue to Broadway 8,669 1.08 8,794 1.10 8,009 1.00 8,701 1.09 Background Broadway to Peninsula 8,494 1.06 8,973 1.12 8,042 1.01 8,804 1.10 (Pending) Avenue Peninsula Avenue to S.R. 92 8,877 1.11 9,169 1.15 8,491 1.06 9,073 1.13 Millbrae Avenue to Broadway 8,685 1.09 8,803 1.10 8,026 1.00 8,710 1.09 Project Broadway to Peninsula g,497 1.06 8,982 1.12 8,047 1.01 8,814 1.10 , Avenue Peninsula Avenue to S.R. 92 8,883 1.11 9,178 1.15 8,498 1.06 9,083 1.14 a Based on the CMP's capacity of 2,000 vehicles per lane per hour. The 1994 Highway Capacity Manual maintains a freeway capacity of 2,300 vehicles per lane per hour. Source: Fehr & Feers Associates, Yrae. , - . - . � �F�f / ! - l � f i � ' r - i / % f '' - � �� .�� , � � . ` ��� � � , . - ,. . , . ._ , ., . ; , � . _ . � � _ � , _ , - , . _ . . ,.;. .. , �. ; � �� . _ f- � � , ,: ��. . . � � �, _ Jf .. , ; _ , , . ~ . . � �, .- _ , , , J� � \�1 . /� � �'f � ' . - ' ,r ' , - : " , . ' •, '/ �. = -A ��endix A � --�; . . _ _._ pp- � , : , ,. � ,� , � . . , ., . . � . . . . . . _ . - - , . ; , . -� . � , . -, ,..�.� , , , . , a cu ation, eets � �- � - .,. _ . , _ � . t . �)� .. � - � . . ) � . . - . . . �. , , � - . ' . `.;� : {: 1 � I .,. s J , _ _ . ` . ,' _ , . �:, . . .. , � I,i �� _ _ � � .. t.. . . ' � ; ' ; �, ,� �t , - �_ � , � ," . � � � � - . . , __ \ ` � � - , \ � _ _ � _ , � ' �. - '. �� � 1 , /.. � , t . � �. . . / ' ` / ' 1 . J. , '' ^. � ' , -- _ t ,, - , . . . , , _ �� � l - _ ,' - ' y . � ..��'� , , , . � , ', , � � , • -:.� , � � �.�, � " _ _ , , ' �, � ' -- _ � _ . _ � _ ,- . . , . : _ . ;.,: . , _ - . ' .. ' . . . . . . ` � • J � . - { . � �'�\ I � � / ' �r �./ ' , . C �1 . � . . • �" `' � • . I . I: .. . . �� `�/ . � , . . �,. '�� " ...` � . � ._. . - � '�, . � ' �- . � .. - _ � . 1 . . . . - ' / 1 " i , _ . - " . . . . , . � - . . ,. � ' . . � .. . . � . . � - . . . . , I � ' �� .`' - . { � � ' ' J . '' , . .. _ . ' � '. � . . . ,. . , `, I_ � ir.� . •�� . _. � . � Critical Movement Analysis: PL3►NNING Calculation Form 1 • �-itersection: BAYSHORE BLVD/101 NB OFF Design Hour: AM PEAK �`oblem Statement: EXISTING L�i�oe=ce=e�e��a�e==o=ovaae==a=aeav==ee��anee=ea=oaaa==�vacsea�=a��e=aeaea=�ve��c�=eeooe=v==�aa�a=eea��ax=�aa�aaa3eaa�ea� Step 1. IDENTIFY LANE GEOMETRY � Step 4. LEFT TURN CHECK � Step 6b. VOLUME ADJUSTMBNT FOR � D � Approach 3:BAYSHORE � -------Approach-----� MULTIPHASE SIGNAL OVERLAP � � 1 1 1 � � .-1- -2- -3- -4-� Possible Vo�.ume Adjusted� � R L � N �a.No. of change 0 0 0 O�Prob- Critical Carryover Critical� 101 NB OFF � R T T T L � � intervals/hour . �able Volume to next Volume � ------------- T H H H T -------------�b.LT capacity on : 0 0 0 O�Phase in vph phase in vph � � APProach 1 < < � > > "--RT � change (vPh) : �-----------------------------------=---� 1 LT-=" v v v <"-RTH �c.G/C ratio . 0 0 0 O�A1B2 295(A1+B1) OR 188(A2+B2) 295) 1 LTH-�> <--TH 1 �d.Opposing volume . 13 301 0 O�B4B3 58(S3) OR 15(84) 58� TH--> <v-LTH � in vph . �A3A4 319(A4) OR 266(A3) 319� RTH-v> """ v--LT �e.LT capacity on . 0 0 0 0� ' � 1 RT--v << �>> Approach 2 � green (vph) : � � ------------ L L T R R -------------�f.LT capacity in : 0 0 0 0� � � T T H T T �DRIVEWAY � vph (b+e) . � i D H H � �g.Left turn volume : 332 12 0 0� � 1 1 1 � � in vph � i � Approach 4:BAYSHORE �h.Is volume > cap. : YES �YES • � (g>f) ? : � � '___________�_________________'________+_____________�___�_____________________+________________�===:�s=====�__________� ��5tep 2. IDENTIFY VOLIIMES, in vph � Step 5. ASSIGN LANE VOLUMSS, in vph � Step 7. SUM OF CRITICAL VOLUMES � U • � � 2 2 � �295(A1B1)+58(B3)+319(A4)+0() � � Approach 3� �------- 5 1 6 1 -------� ' i �3: LT= 15 � � ( 2;RT= 5 � 6 0 6 5 "+ 5 � = 672 vph � TH= 475 � � � TH= 8 � ++ <- 8 �_______________________________________� � � RT= 56 � v � LT= 12 � < v v� v+ 12 � Step S. INTERSECTION LEVEL OF � ------------- -------------i � SERVICE I � <--Approach 2 � (compare step_7-with table 6) ( I � � A � � Approach 1--> � 175 -" � ""-"" � ------------ � ------------- � � �_______________________________________� �1:LT= 332 � � � 4: RT= 4 � 118 +> � �++ i Step 9.•RECALCULATE i TH= 18 � � � TFi= 634 � 283 -v LT= 58 �------- 3 3 -------�Geometric Change: � RT= 283 i Approachl4� � � 5 1 1 � �Signal Change: � � � 8 9 5 4 � �Volume Change: � '--------------------------------+_______________________________________+_______________________________________� -------------------------------------- Step 3. IDENTIFY PHASING � Step 6a. CRITICAL VOLUMES, in vph � CONI�IENTS � � (two phase signal) � � � --"' AND <-- A1B2 AND � � Approach 3� � I --> OR v-- /OR A2B1 � I I I � < B4B3 � I I I I � , � i A3A4 �------------- -------------� � � I � � Approach 1 i � � I � See Step 6b. � �� � I D � Approach 2 � � �------------- ------------� � � -----------------------------------i--� � � � I �A1 --> A3 � w B1 v-- B3 < � � � � I v I � � � Approach 4� � Exclusive right turns reduced 0� A2 <-- A4 � B2 --� B4 �' � � V/C Ratio =.47 � --------------------------------------------------------------------------------------�-- -------------------------- � u I� � I'J ��tersection: BAYSHORE BLVD/101 NB OFF oblem Statement: EXISTING �__________________�______________�___° Step 1. IDENTIFY LANE GEOMETRY � I� � Approach 3:BAYSHORE � � 1 1 1 � � I R L ( N I 101 NB OFF � R T T T L � I -�------------ T H H H T -------------�' I IApproach 1 < < � > > --RT U1 LT--� v v v <"-RTH 1 LTH-�> <--TH 1 �--> <v-LTH j� RTH-v> . � � � v--LT U1 RT--v << �>> Approach 2 ----------- L L T R R ------------- � T T H T T �DRIVEWAY n � H H � � i � 1 1 1 � LJ � Approach 4:BAYSHORE I��tep 2. IDENTIFY VOLUMES, in vph ��� � Approach 3� ^i: LT= 16 I I I 2:RT= 2 TH= 869 � � � TH= 5 RT= 150 � v � LT= 11 ------------- ------------- � <--Approach 2 Critical Movement Analysis: PI,ANNING Calculation Form 1 ;�=eoa=�e=a�o-=e=oee==e=��es==e���o�eev Step 4. LEFT TURN CF�CK -------Approach----- -1- -2- -3- -4- a.No. of change . 0 0 0 0 intervals/hour b.LT capacity on . 0 0 0 0 change (vph) c.G/C ratio . 0 0 0 0 d.Opposing volume .. 7 156 0 0 in vph . e.LT capacity on . 0 0 0 0 green (vph) • f.LT capacity in . 0 0 0 0 vph (b+e) . G Design Hour: PM PEAR e=��e=e��av�3s�aaa�3=�as3a�a-��ooc�e � Step 6b. VOLUME ADJUSTMENT FOR � MULTIPHASE SIGNAL OVERLAP � Possible Volume Adju �Prob- Critical � Carryover Crit �able Volume to next Vol �Phase in vph phase in �----------------------------------- �A2B1 134(A2+B2) OR 133(A1+B1) �B4B3 103(B3) OR 16(B4) �A3A4 510(A3) OR 206(A4) � � � g.Left turn volume : 219 il 0 0� � in vph . � �h.Is volume > cap. : YES YES : � (J>f) ? . � F_________________________________�_____+_________________=_________________ � Step 5. ASSZGN LANE VOLUMES, in vph � Step 7. SUM OF CRITICAL VOLUMES I � 1 3 5 � �134(A2B2)+103(B3)+510(A3)+0() �------- 5 6 1 1 -------� 0 0 0 6 + + � � < v v > �+ 2 � <- 5 v+ 11 = 747 vph Step 8 INTERSECTION LEVEL OF SERVICE (compare step 7 with table 6) I A I Approach 1--> � � 127 - '^------------ -------------� 93 +" < � � > �___________________________________ 4:LT= 219 � "' � 4: RT= 2 � 34 +> � �++ � Step 9. RECALCULATE --� TH= 34 � � � TH= 409 � 122 -v LT= 103 �------- 1 2 2 -------�Geometric Change: RT= 122 i Approachl4� I I o 0 0 � �si�ai Change: � � 3 6 4 2 � �Volume Change: ----- ______________________________________+_______________________________________+________________________�_____----- uStep 3. IDENTIFY PHASING � Step 6a. CRITICAL VOLUMES, in vph � COt�IENTS (two phase signal) � --" AND <-- A1B2 AND I � Approach 3� � � --> OR v-- /OR A2B1 � < B4B3 ' � —j � " A3A4 � V� Approach 1 See Step 6b. Approach 2 ---------V ------------------------� i � A1 > A3 � B1 v-- B3 <� � � I .. � � I � Approach 4� � Exclusive right turns reduced 0�s A2 <-- A4 � B2 --" B4 �> � � V/C Ratio =.52 __________________________________________________________ -------------------- ------------------ � � . � � � -, J Critical Movemeat Analysis: PLANNING Calculation Form 1 �-�tersection: BAYSHORE SLVD/AIRPORT BLVD-101 NB OFF Design Hour: AM PEAK oblem Statement: £XISTING _�________________����_____________________________ �_�____�_�_�____________�______�_____�_________=�=��a�==�=�___�____ Step 1. IDENTIFY LANE GEOMETRY � Step 4. LSFT T[JRN CHECK � Step 6b. VOLUME ADJUSTMENT FOR � � � Approach 3:BAYSHORE � :------Approach-----� MULTIPHASE SIGNAL 0�7ERLAP � � 1 1 1 � � .-1- -2- -3- -4-� Possible Volume Adjusted� � R L � N �a.No. of change 0 0 0 O�Prob- Critical Carryover Critical� 101 NB OFF � R T T T L � � intervals/hour . �able Volume to next Volume � ------------- T H H H T -------------�b.LT capacity on : 0 0 0 O�Phase in vph phase in vph � ---------------------------------- j�Approach 1 << �>> "--RT 1 � change (vph) . �" "' � J1 LT--" v v v <'-RTH �c.G/C ratio . 0 0 0 O�A1B2 276(B2) OR 39(A1) 276� 1 LTH-"> <--TH 1 �d.Opposing volume . 0 0 0 O�A2B1 108(A2) OR 8(S1) 108� TH--> �v-LTFi � in vph _ �A3B4 370(B4) OR 146(A3) 370� RTH-v> "' "" v--LT 1 (e.LT capacity on . 0 0 0 O�A4B3 52(A4) OR 16(B3) 52� IRT--v << �>> Approach 2 � green (vph) : � � ------- L L T R R ------------- �f.LT capacity in : 0 0 0 0 � � � T T H T T �AIRPORT � vph (b+e) . I I � H H � �g.Left turn volume : 0 0 0 0� � n 1 � � in vph . � � U � Approach 4:DRIVEWAY �h.Is volume > cap. : • � � (g>f) ? � � � __________________�__________���__�____+_____�________________�'__'____________+_____________________________________�_� j,'atep 2. IDENTIFY VOLUMES, in vph � Step 5. ASSIGN LANS VOLUMES, in vph � Step 7. SUM OF CRITICAL VOLUMES � J� � 1 3 3 � �276(B2)+108(AZ)+370(B4)+52(A4) � � APProach 3� �------- 4 3 4 7 -------� � �i: LT= 713 � � � 2:RT= 50 � 6 5 1 0 "'- 50 � = 806 vph � JTH= 35 I I I TH= 108 � �++ � <- 108 I_______________________________________I RT- 146 � v � LT= 8 � < v>> v- 8 � Step 8. INTERSECTION LEVEL OF � ------------- -------------I SERVICE I <--Approach 2 I � (compare step 7 with table 6) i � ; ; ;--A ; � Approach 1--> � � ------- � ^�---------- -- -------------� 276 -" < " > �_______________________________________� �1:LT= 521 �. " � 4: RT= 4 � 244 +"' + �+ � Step 9. RECALCULATE i J TFI= 39 � � � TH= 32 � 39 +> � RT= 0 � � � LT= 16 �------- -------�Geometric Change: � � Approach 4� � � 1 3 � �Signal Change: � � � _ 6 2 4 � �Volume Change: � - ---- ------------+-------------' ------------------------+------------------------------------- -� _____________________"--_------------ --------------------------------------- -------------------------- - -- Step 3. IDENTIFY PHASING � Step 6a. CRITICAL VOLUMES, in vph � COMMENTS � (two phase signal) � I --" AlB2 � � Approach 3� � ] --> � � � � I <-- A2B1 � � � � I v-- � � � � � —j A3S4 �------------- -------------� � v i � Approach 1 � � J i i A4B3 i See Step 6b. � i � � Approach 2 � i � � � �------------- ------------� . � -------------------------------�------� � � � I �A1 --> A3 � w Bl v-- B3 <� � � � � I � � � � � Approach 4� � Exclusive right turns reduced 0� � A2 <-- A4 � B2 --" B4 �> � � V/C Ratio =.59 � -----------------------------------------------------------�naa�s�-------- �--------------------------------------------------- I �'� J � � Critical Movement Analysis: PLANNING Calculation Form 1 �-ltersection: BAYSHORE BLVD/AIRPORT BLVD-101 NB OFF Design Hour: PM PEAK �oblem Statement: EXISTING �e==e=en==e=e==ea�exe==e====e==-c=eeeee=oc=ee�==�=voso�evo��ea�ea�oo3xeaa=o=-�vaeo��-��-�--a�=�ae==�o3�aa3=va�=�ssaaeec Step 1. IDENTIFY LANE GEOMETRY � Step 4. LEFT TURN CHECK � Step 6b. VOLUME ADJ[JSTMSNT FOR � � Approach 3:BAYSHORE � . -------Approach-----� MULTIPHASE SIGNAL OVERI�AP � � � 1 1 1 � " � :-1- -2- -3- -4-� Possible Volume Adjusted� � R L � N �a.No. of change 0 0 0 O�Prob- Critical Carryover Critical� 101 NS OFF � R T T T L � � intervals/hour . �able Volume Co next Volume � ------------- T H H H T -------------�b.LT capacity on : 0 0 0 O�Phase in vph phase in vph � ---------------------------------- ,�Approach 1 < < � > > "--RT 1 � change (vph) : ----- � 1 LT--" v v v <"-RTH �c.G/C ratio 0 0 0 O�A1B2 139(B2) OR 26(A1) 139� 1 LTH-"'> <--TIi 1 �d.Opposing volume . 0 0 0 O�A2B1 148(A2) OR 3(B1) 148� TH--> <v-LTH � in vph . �A3B4 318(A3) OR 241(B4) 318� i��_i RTH-v> ��� v--LT 1 �e.LT capacity on . 0 0 0 O�A4B3 93(A4) OR 45(B3) 93� RT--v << �>> Approach 2 � green (vph) : . � � ----------I L L T R R -------------�f.LT capacity in : 0 0 0 0� � T T H T T �AIRPORT � vph (b+e) . � I � H Ii � �g.Left turn volume : 0 0 0 0� � ',� � 1 � � in vph : � � � Approach 4:DRIVEWAY �h.Is volume > cap. • � � -� (g>f) ? : � � _____�_______________�________________-+___________________________�____�______+��___________�___________________'_____� '�,3tep 2. IDENTIFY VOLUMES, in vph � Step 5. ASSIGN LANS VOLUMES, in vph � Step 7. SUM OF CRITICAL VOLUM£sS � J � � � 3 2 2 � �139(S2)+148(A2)+318(A3)+93(A4) � � Approach 3� �------- 1 3 1 4 -----" � � 3: LT= 457 � � TH= 32 � � RT= 318 � v � � 2:RT= 95 � TH= 148 � LT= 3 <--Approach 2 2 4 1 + + � v > > "- 95 � = 698 vph � <- 148 �_______________________________________� v- 3 � Step 8. INTERSECTION LEVEL OF � I SERVICE I (compare step 7 with table 6) I A I � � ------- � Approach 1-�> � ^-�---------- -- -------------� 139 -� � � > �_______________________________________� �1:LT= 256 � " � 4: RT- 9 � 117 +" + �+ � Step 9. RECALCULATE i J TH= 26 � � I TH= 39 � 26 +> RT= 0 � � � LT= 45 �------- -------�Geometric Change: � � � Approach 4� � � 4 3 � �Signal Change: � � � 5 9 9 � �Volume Change: � --------------------------------------+---------'------------------_----------+---------------------------------------� - ----------------------I---------------------------- ---------- --------------------------------------- Step 3 IDENTIFY PHASING , Step 6a. CRITICAL VOLUMES, in vph � COMMENTS i � (two phase signal) � � --' A1B2 � � Approach 3� � � --> � � � � � I <-- A2B1 � � � � v-- � � � � � ""1, A3B4 �------------- -------------� � I I � Approach 1 � � J i i A9S3 i See Step 6b. � � ��''� , , ► I{ � -_ Approach 2 � � U �----------- ------------� � i ----------------------------------- i-- i i i i � �Al --> A3 � w Bl v-- B3 < � � � � I v � � � � Approach 4� � Exclusive right turns reduced 0� � A2 <-- A4 � B2 --" B4 �> � � V/C Ratio =.51 � -----------------------------------------�___-------�-------------- � ----------------------------------------- � � � �- Critical Movement Analysis: PLAHI�ING Calculation Form 1 s�tersection: AIRPORT BLVD/ANZA AVE Design Hour: AM PEAR :oblem Statement: EXISTING I'====_�___�__�_������==��a�=�________________�___�___=�=��z�====�_�___��----______-------_----__--------��9�===�_� ,,._, ---- ------- ---- -------- Step 1. IDENTIFY LANE GEOMETRY � Step 4. LEFT TURN CF�CR � Step 6b. VOLUME ADJIISTb�NT FOR � Approach 3:AIRPORT � -------Approach-----� MULTIPHASE SIGNAL OVERLAP � � 1 1 1 � "' � :-1- -2- -3- -4-� Possible Volume Adju � R L � N �a.No. of change 0 0 0 O�Prob- Critical ' Carryover Crit ANZA � R T T T L � � intervals/hour . �able Volume to next Vol ------------- T H H H T'-------------�b.LT capacity on : 0 0 0 O�Phase in vph phase in � APProach 1 < < � > > "--RT 1 , � change (vPh) : �----------------------------------- 1 LT--"' v v v <"-RTH �c.G/C ratio . 0 0 0 O�A1B2 93(A1) OR 49(B2) 1 LTH-"� <--TH �d.Opposing volume . 0 0 0 O�A2B1 48(A2) OR 21(B1) �--> cv-LTIi 1 � in vph . �B4B3 138(B4) OR 81(B3) RTH-v> ""' � v--LT �e.LT capacity on : 0 0 0 O�A3A4 287(A3) OR 65(A4) �_ 1 RT--v << �>> Approach 2 � green (vph) : � ..-- ---------- L L T R R -------------�f.LT capacity in : 0 0 0 0� � T T H T T �DRIVEWAY � vph (b+e) . � � � H H � �g.Left turn volume : 0 0 0 0� � 1 1 1 � � in vph � � Approach 4:AIRPORT �h.Is volume > cap. : : � (g>f ) � . � _______________________________________+�_���___________�------_______----_____+--------____------____---- ------ ---- -------- ------ ----�-------- ^'Step 2. IDENTIFY VOLUMES, in vph � Step 5. ASSIGN LANE VOLUMES, in vph � Step '7. SUM OF CRITICAL VOLUMES J • � � 2 2 1 � �93(A1)+48(A2)+138(B4)+267(A3) � Approach 3� �------- 1 6 8 3 -------� J3: LT= 138 � � � 2:RT= 23 � 9 8 7 8 �- 23 � = 566 vph TH= 555 � � � TH= 27 � ++ � � <+ 27 �___________________________________ RT= 19 � v � LT= 22 � < v v> v+ 21 � Step 8. INTERSECTION LEVEL OF ------------- ---p---------i I SERVICE � <--A proach 2 � (compare step_7_with table 6) � � � �'` � Approach 1--> � 49 -"' � """- -iii ------------ -------------� 0 +� < - � > i=====______________________________ I1:LT= 50 � " � 4: RT- 13 � 93 +> � �++ � Step 9. RECALCULATE ,�,� TH= 93 � � � TH= 117 � 76 -v � RT= 76 � � � LT= 81 �------- -------�Geometric Change: A roach 4 8 6 5 1 � �Signal Change: I PP I � -� 1 5 2 3 � • �volume Change: �•--------------------------------------+______-_------------------------_______+___________________________________ •-------------------------------------- ------------------------ � Step 3. IDENTIFY PHASING � Step 6a. CRITICAL VOLUMES, in vph � COMMENTS � (two phase signal) � "�j --" A1B2 � � APProach 3� � � --' <-- AZa� i i i i V-- i i i i < B4B3 �------------- -------------� . � i � � Approach 1 � � A3A4 � See Step 6b. � v � � ' � � Approach 2 � i-------------I _ I ------------i ---------------------------------------� � � � � A1 --> A3 � w B1 v-- B3 <� � � � � . � � � � � Approach 4� � Exclusive right turns reduced 0� A2 <-- A4 � B2 --" B4 �> � � V/C Ratio =.41 ___________________________________________________ � � � � Critical Movement Analysis: PLANNING Calculation Form 1 zntersection: AIRPORT BLVD/ANZA AVE. Design Hour: PM PEAR :oblem Statement: EXISTING I'=o=eeevee=ee=�va==e�a�am=�==a�eoc=-----cco=x�e------- ��e=a=_��==�a=eoo-x-------�ae�a=�ae��v�aoaa=acesa�ace� _____ _______�e=eec _I_______ Step 1. IDENTIFY LANE GEOMETRY � Step 4. LEFT TURN CF�CK Step 6b. VOLUME ADJUSTMEN'P FOR � Approach 3:AIRPORT � -------Approach-----� MiJLTIPHASE SIGNAL OVERLAP � � 1 1 1 � " � :-1- -2- -3- -4-� Possible Volume Adju � R L � N �a.No. of change 0 0 0 O�Prob- Critical . Carryover Crit ANZA � R T T T L � � intervals/hour . �able Volume to next Vol ------------- T H H H T -------------�b.LT capacity on : 0 0 0 O�Phase in vph phase in � APProach 1 << �>> "--RT 1 � change (vPh) : �----------------------------------- 1 LT--� v v v <"-RTH �c.G/C ratio . 0 0 0 O�A1B2 49(B2) OR 49(A1) 1 LTH-"> <--TH �d.Opposing volume . 0 0 0 O�A2S1 151(A2) OR 45(B1) TH--> <v-LTH 1 � in vph . �B4B3 285(B3) OR 56(B4) RTH-v> ��� v--LT �e.LT capacity on : 0 0 0 O�A3A4 184(A3).OR 119(A4) 1 RT--v << �>> Approach 2 � green (vph) : � .,r----------- L L T R R -------------�f.LT capacity in : 0 0 0 0� � T T H T T �DRIVEWAY � vph (b+e) . � � H H � �g.Left turn volume : 0 0 0 0� !� � 1 1 1 � � in vph - � � Approach 4:AIRPORT �h.Is volume > cap. : � (g>f) ? . � _______________________��_____________�+________________�___�_________��_______+_______�_______________�___________ JStep 2. IDENTIFY VOLIIMES, in vph � Step 5. ASSIGN LANE VOLUMES, in vph � Step 7. SUM OF CRITICAL VOLUMES • � � 1 1 � �49(B2)+151(A2)+285(B3)+184(A3) � � Approach 3� ' �------- 2 5 8 5 -------� �: LT= 56 � � � 2:RT= 24 � 5 9 4 6 �- 24 � = 669 vph JTH= 343 � � � TH= 106 � ++ � � <+ 106 �___________________________________ RT= 25 � v � LT= 45 � < v v> v+ 45 � Step 8. INTERSECTION LEVEL OF ------------- -------------� � <--Approach 2 � � Approach 1--> � ------------- -------------� �1:LT= 58 � " � 4: RT= 15 � TFi= 49 � � � TH= 223 � RT= 41 � � � LT= 285 � � Approach 4� �______________________________________ �Step 3. IDENTIFY PHASING '-j --" A1B2 J� <-- A281 �-- � � < B4B3 > � � A3A4 v � � 49 - ^ w 8 +" < > 49 +> � � + + _-41 -v --- 2 1 1 ------- I I 8 1 0 1 I I � 5 9 4 5 � }o=====-eev=eveee=e-=e�=e=e=v===o===eee' � Step 6a. CRITICAL VOLUMES, in vph � (two phase signal) � � Approach 3� � � � , ------------- ------------. � Approach 1 See Step 6b. Approach 2 SERVICE (compare step 7 with table 6) I A I Step 9. RECALCULATE Geometric Change: Signal Change: IVolume Change: F___________________________________ I COMMENTS �---------------------------------------� � � i !IA1 --> A3 �^ B1 v-- B3 <� � � � � J v � � � � Approach 4� � Exclusive right turns reduced 0� A2 <-- A4 � B2 --� B4 �> � � V/C Ratio =.49 -----------------------------��________________---------_________________________---------------------------=_____' - ---------------- --------- --------------------------- � � � J � � HCS: IInsignalized Intersections Release 2.1d AIRCOYAM.HCO Page i =aaes-=a�aaas:aazs��e�aaa��aexaeaaaaa=�oo=��aaa�a��asa�as��mea�aaoaaa=� Center For Microcomputers In Transportation � IIniversity of Florida 512 Weil Hall Gainesville, FL • 32611-2083 Ph: (904) 392-0378 � ____�____==_=eee�aoemooaea�o-eeeo=�ee�oeoeaeea=oo�eo-=v�a�eeaaeaaevaee= Streets: (N-S) AIRPORT SLVD (E-W) COYOTE POINT DR Major Street Direction.... EW Length of Time Analyzed... 15 (min) Analyst ................... TN ;� Date of Analysis.......... 11/26/96 Other Information.........EXISTING - AM PEAK Two-way Stop-controlled Intersection ____________________________________________________________________ --- � � Eastbound � Westbound � Northbound � Southbound ' � L T R � L T R � L T R � L T R �---- ---- ----�---- ---- ----�---- ---- ----�---- ---- ---- No. Lanes � 1 1 0 � 0 1 1 � 0 0 0 � 0 > 0 < 0 I� Stop/Yield � N� N� � Volumes � 293 100 � 48 6� � PHF �.95 .95 � .95 .95� �.95 195 Grade � 0 � 0 � � � � MC's (�) � 0 � � � 0 0 SII/RV's (�)� 2 � � � Z 2 CV's (�) � � � � � � 0 PCE's �i.oi � �• I �i.oi i.oi ----------------------------------------------------------------------- � Adjustment Factors � Vehicle Critical Follow-up Maneuver Gap (tg)� Time (tf) ------------------------------------------------------------------ �Left Turn Major Road 5.00 -2.10 J Right Turn Minor Road 5.50. 2.60 Through Traffic Minor Road 6.00 3.30 Left Turn Minor Road 6.50 3.40 � � � J � � � � -� � J � � HCS: IInsignalized Intersections Release 2.id AIRCOYAM.HCO Page 2 �=eeeae�aoaaaoo�e�aa�e=�=�eamaaaaa�-3v3v�ee�a�a�eaa�=��vsxa�oaxanamas�s . D ______-___ Worksheet_for TWSC Intersection � --------------------------------- Step 1: RT from Minor Street NB SS -------------------------------------------------------- ' D Conflicting Flows: (vph) 51 Potential Capacity: (pcph) 1305 Movement Capacity: (pcph) 1305 Prob. of Queue-Free State: 0.89 . D ________________________________________________________ Step 2: LT from Major Street _____--_____WB_________-_EB • ----------------------------- Conflicting Flows: (vph) 57 � Potential Capacity: (pcph) 1610 Movement Capacity: (pcph) 1610 Prob. of Queue-Free State: o•$1 -------------------------------------------------------- � Step 4: LT from Minor Street_____________NB 3B � Conflicting Flows: (vph) 467 � Potential Capacity: (pcph) 568 � Major LT, Minor TH Impedance Factor: 0.81 Adjusted Impedance Factor: 0.81 Capacity Adjustment Factor • . due to Impeding Movements 0.81 � Movement Capacity: (pcph) -----------------------------------------------------458 Intersection Performance Summary �� Avg . 9 5 $ Flow Move Shared Total Queue Approach Rate Cap Cap Delay Length LOS Delay I� Movement (pcph) (pcph) (pcph)(sec/veh) (veh) _____ (sec/veh) SB L 8 458 > 1189 3.5 0.4 A 3.5 � SB R 144 1305 > EB L 311 1610 2.8 0.8 A 2.1 Intersection Delay = 2.2 sec/veh � � C L�J J � � �� r, J HCS=�Unsignali==d Intersections Release 2.1d AIRCOYPM.HCO Page 1 ___ __ _��=�__»s����___====a��asaa�aa�aa:�=aa��aaaa��a:��aa: Center For Microcomputers In Transportation � University of Florida 512 Weil Hall Gainesville, FL 32611-2083 Ph: (904) 392-0378 • oveove===a==�==oeeo�c=v�=oeee=oco=-eeoc===eaoac0000=====___�_----�=�==o � Streets: (N-S) AIRPORT BLVD (E-W) COYOTE POINT DR Major Street Direction.... EW Length of Time Analyzed... 15 (min) Analyst ................... TN � Date of Analysis.......... li/26/96 Other Information.........fiXISTING - PM PEAK Two-way Stop-controlled Intersection _______�__�___________�_____�__�---------------�----------------------- n � Eastbound � Westbound � Northbound � Southbound I, i � L T R � L T R � L T R � L T R �.-� �---- ---- ----�---- ---- ----�---- ---- ----�---- ---- ---- No. Lanes � 1 1 0 � 0 1 1 � 0 0 0 � 0 > 0 < 0 �'�'I'��� Stop/Yield � N� NI I I I Volumes � 131 54 � 98 8� � 12 479 Lj PHF �.95 .95 � .95 .95� �.95 .95 Grade �. 0 (. 0 � � � MC's (�) � 0 � I I � 0 � SUIRV's (�r) � 2 � I I 2 2 ' CV's i�) � 0 � I I 0 0 PCE's �I.O1 �• � , �1.01 1.01 ----------------------------------------------------------------------- Adjustment Factors � Vehicle Critical Eollow-up Maneuver Gap (tg) Time (tf) ------------------------------------------------------------------ �Left Turn Major Road 5.00 2.10 � Right �rn Minor Road 5.50 2.60 Through Traffic Minor Road 6.00 3.30 Left Turn Minor Road 6.50 3.40 � �� � � �, --� J � I� � � � U N�l HCS: Unsignalized Intersections Release 2.1d AZRCOYPM.HCO Page 2 m��eaaa=eeeeva�evm=vma3:aaaa=�==��a�aeaaaaa��=�aosaa�aaaaasaa�caasa�aaa --_____-_-_Worksheet_for TWSC Intersection --------------------------------- Step 1: RT from Minor Street NB SB -------------------------------------------------------- Conflicting Flows: (vph) 103 Potential Capacity: (pcph) 122$ Movement Capacity: (pcph) 1228 Prob. of Queue-Free State: 0:59 Step 2: LT from Major Street WB EB -------------------------------------------------------- Conflicting Flows: (vph) 111 Potential Capacity: (pcph) 1518 Movement Capacity: (pcph) 1518 Prob. of Queue-Free State: 0.91 -------------------------------------------------------- Step 4: LT from Minor Street NB SB Conflicting Flows: (�+ph) 302 Potential Capacity: (pcph) 708 Major LT, Minor TH Impedance Factor: 0.91 Adjusted Impedance Factor: 0.91 Capacity Adjustment Factor ' ' due to impeding Movements 0.91 Movement Capacity: (pcph) ------------------------------------------------------43 Intersection Performance Summary �� Avg . 9 5 � Flow Move Shared Total Queue Approach Rate Cap Cap Delay Length LOS Delay � Movement (pcph) (pcph) (pcph)(sec/veh) (veh) _____ (sec/veh) SB L 13 643 > 1201 5.3 2.4 B 5.3 ^� SB R 509 1228 � JEB L 139 1518 2.6 0.2 A 1.8 � � � Intersection Delay = 3.8 sec/veh r � � Critical Movement Analysis: PLFINNING Calculation Form 1 �ntersection: BAYSHORE BLVD/101 NB OFE Design Hour: AM PEAK � �roblem Statement: APPROVED -------------------------------------------------------------------------------'------------------------------ Step 1. IDENTIFY LANE GEOMETRY � Step 4. LEFT TURN CHECK � Step 6b. VOLUME ADJUSTMENT FOR � � Approach 3:BAYSHORE � -------Approach-----� MULTIPHASE SIGNAL OVERLAP � � 1 1 1 � " � .-1- -2- -3- -4-� Possible Volume Adjusted� ' � R L � N �a.No. of change . 0 0 0 O�Prob- Critical Carryover Critical� O1 NB OFF � R T T T L � � intervals/hour . �able Volume to next Volume � ------------- T A H H T -------------�b.LT capacity on : 0 0 0 O�Phase in vph phase in vph � � A roach 1 < < > > "--RT chan e (vph) --------------------------------- PP 5 • ---- --� 1 LT--� v v v <"'-RTH Ic.G/C ratio . 0 0 0 O�AlB2 299(A1+B1) OR 188(A2+B2) 299� 1 LTH-"'> <--TH 1 �d.Opposing volume . 0 0 0 O�B4B3 58(B3) OR 15(B4) 58( TH--,> <v-LTH � in vph . �A3A4 319(A4) OR 266(A3) 319� RTA-v> ""' " v--LT �e.LT capacity on : 0 0 0 0� � 1 RT--v << �>> Approach 2 � green (vph) : � � ------------ L L T R R -------------�f.LT capacity in : 0 0 0 0� � � T T H T T �DRIVEWAY � vph (b+e) . � � � H H � �g.Left turn volume : 0 0 0 0� ' � D � 1 1 1 � � in vph • � � � Approach 4:BAYSHORfi �h.Is volume > Cap. : � � (3>f> ? . � I _______________________________________+_______________________________________+__________________________________=====1 ;�Step 2. IDENTIFY VOLUMES, in vph � Step 5. ASSIGN LANE VOLUMES, in vph � Step 7. SUM OF CRITICAL•VOLUMES � � � 2 Z � I299(A1B1)+58(B3)+319(A4)+0() � I Approach 3� �------- 5 1 6 1 -------� � ,�3: LT= 15 � � � 2:RT= 5 � 6 0 6 5 "'+ 5 � = 676 vph � J TH= 475 � � � Tx= 8 � ++ � � <- 8 I_______________________________________I RT= 56 � v � LT= 12 � < v v> v+ 12 � Step 8. INTERSECTION LEVEL OF � ------------- SERVICE � ---------- � � � <--Approach 2 � � (compare step_7_with table 6) � J � I I,� I I Approach 1--> � 175 -" � ""-'- � -----=------- -------------� 157 +" < � " > �______________________=________________� �l:LT- 332 � " � 4: RT= 4 � 18 +> � �++ � Step 9. RECALCULATE � TH= 18 � � � TH= 634 � 287 -v � � RT= 287 � � � LT= 58 �------- 3 3 -------�Geometric Change: � � Approach 4� � � 5 1 1 � �Signal Change: � � � S 9 5 4 � �Volume Change: � �-______________________________________+---------------------------------------+_______________________________________� ---- -------------- --------------------------------------- `�Step 3. IDENTIFY PHASING � Step 6a. CRITICAL VOLtJMES, in vph � COMMENTS � � (two phase signal) � I "j --" AND <-- A1B2 AND � I APProach 3� � ' --> OR v-- /OR A2B1 � � I I J � < B4B3 � � � � � >, � � � � � � I" A3A4 �------------- -------------� � � � Approach 1 � i � See Step 6b. � � � Approach 2 � ------------- ------------� � � � ---------------------------------------� � � ( � A1 --> A3 �^ B1 v-- B3 <I � � � � � V � � � � Approach 4� � Exclusive 'right turns reduced 0� � A2 <-- A4 � B2 -- B4 �> � � V/C Ratio =.47 � ----------------------------------------- � LJ n U � � Critical Movement Analysis: PLANNING Calculation Form 1 �ntersection: BAYSHORE BLVD/101 NB OFF Design Hour: PM PEAK Jroblem Statement: APPROVED --------------�a��------------------------------------------------------------------------------------------------------ Step 1. IDENTIFY LANE GEOMETRY � Step 4. LEFT TURN CHECK � Step 6b. VOLUME ADJUSTMENT FOR � �j � Approach 3:BAYSHORE � -- ----Approach-----� MULTIPHASE SIGNAL OVERLAP � � � 1 1 1 � " � .-1- -2- -3- -4-� Possible Volume Adjusted) � R L � N �a.No. of change . 0 0 0 O�Prob- Critical Carryover Critical� 101 NB OFF � R T T T L � � intervals/hour . �able Volume to next Volume � �} ----------- T H H H T -w-----------�b.LT capacity on : U 0 0 O�Phase in vph phase in vph � J Approach 1 << �>> --RT � change (vPh) : �---------------------------------------� 1 LT--� v v v <"'-RTH �c.G/C ratio . 0 0 0 O�A1B2 156(A1+B1) OR 134(A2+B2) 156� 1 LTH-"> <--TH 1 �d.Opposing volume . 0 0 0 O�B4B3 103(B3) OR 16(B4) 103� � TH--> ^^^ <v-LTH � in vph : �A3A4 510(A3) OR 206(A4) 510� RTH-v> v--LT �e.LT capacity on 0 0 0 0� � 1 RT--v << �>> Approach 2 � green (vph) � � ------------- L L T R R -------------�f.LT capacity in : 0 0 0 0� � � T T A T T �DRIVEWAY � vph (b+e) . � � D � H H � �g.Left turn volume : 0 0 0 0� � � 1 1 1 � � in vph � � � Approach 4:BAYSHORE �h.2s volume > cap. : : � � (J>f) ? • � . � ;�--------------------------------------+_______________________________________+_______________________________________� ------------------------------------ Step 2. IDENTIFY VOLUMES, in vph � Step 5. ASSIGN LANE VOLUMES, in vph � Step 7. SUM OF CRITICAL VOLUMES � I � 1 3 5 � �156(A1B1)+103(B3)+510(A3)+0() � � Approach 3� �------- 5 6 1 1 -------) � �3: LT= 16 � � I 2:RT= 2 � 0 0 0 6 "+ 2 � = 769 vph .. ( TH= 869 � � � TH- 5 � ++ � � <- 5 �_______________________________________� RT= 150 � v � LT= il � < v v> v+ li ��Step 8. INTERSECTION LEVEL OF � �------------- -------------� I SERVICE � � '. <--Approach 2 � � (compare step_7-with table 6) � � � � A � � Approach 1--> � 12'1 -" ( '"""' � ----- -------------�' 93 +" < " "' > �_______________________________________� �1:LT= 219 � " � 4: RT= 2 � 34 +> � �++ � Step 9. RECALCULATE � TH= 34 I � � TH= 409 � 145 -v � i RT= 145 � � � LT= 103 �------- 1 2 2 -------�Geometric Change: � Approach 4� � � 0 0 0 � �Signal Change: i I I 3 6 4 2 � �Volume Change: _ ___+_______________________________________+_______________________________________� Step 3 IDENTIFY PHASING � Step 6a. CRITICAL VOLUMES, in vph � COMMENTS � � - � (two phase signal) � � -" AND <-- A1B2 AND � � Approach 3� � I --> OR v-- /OR A2B1 � � I � � < B4B3 � � � � � � � � � � � � � � " A3A4 �------------- -------------� � i � � Approach 1 � � See Step 6b. � I �' IJ I APProach 2 � i i-------------I I ------------i � ''�-------------------------------------- � � � � � J A1 --> A3 � w B1 v-- B3 <� � � � � � � I I � � Approach 4� � Exclusive right turns reduced 0� � A2 <-- A4 � B2 --� B4 �> � � V/C Ratio =.54 � �-_______________________________________________________________________________________________________________________ � ------------------- � � � Critical Movement Analysis: PLANNING Calculation Form 1 ;�ntersection: BAYSHORE BLVD/AIRPORT BLVD-101 NB OFF Design Hour: AM PEAK IJ roblem Statement: APPROVED ---------------------------------------------------------------------------------------- -- --- - - - --- - - - - - - - - ------------- Step 1. IDENTIFY LANE GEOMETRY � Step 4. LEFT TURN CHECK � Step 6b. VOLUME ADJUSTMENT FOR � f"� i ipproaih13:BAYSHORE � ---1---AZproach-----� MULTIPHASE SIGNAL OVERLAP � J � " � .- - -3- -4-� Possible Volume Adjusted� � R L � N �a.No. of change . 0 0 0 O�Prob- Critical Carryover Critical� 101 NB OFF � R T T T L � � intervals/hour . �able Volume to next Volume � -- T H H H T -------------�b.LT capacity on : 0 0 0 O�Phase in vph phase in vph � Approach 1 << �>> �--RT 1 � change (vPh) : �---------------------------------------� 1 LT--" v v v <"'-RTH �c.G/C ratio . 0 0 0 O�A1B2 280(B2) OR 39(A1) 280� 1 LTH-"> <--TH 1 �d.Opposing volume . 0 0 0 O�A2B1 108(A2) OR 8(B1) 108� D TH--> ^ w^ <v-LTH � in vph : �A3B4 374(B4) OR 146(A3) 374� RTH-v> v--LT 1 �e.LT capacity on • 0 0 0 O�A4B3 52(A4) OR 16(B3) 52� -_-_-_-RT==v < < ( > > Approach 2 � green (vph) • � � -- L L T R R -------------�f.LT capacity in : 0 0 0 0� � � T T H T T �AIRPORT � vph (b+e) • I I D � H H � �g.Left turn volume c 0. 0 0 0� �, 1 � � in vph ' � ' � � Approach 4:DRIVEWAY �h.2s volume > cap. : : � _ � (s>f) ? : � I +--------------------- - +---------------------------- ----------I - - - - - - ----------------------- --------------------------------------- Step 2. IDENTIFY VOLUMES, in vph � Step 5. ASSIGN LANE VOLUMES, in vph � Step 7. SUM OF CRITICAL VOLUMES - � � � � � � � � � 1 3 3 � �280(B2)+108(A2)+374(B4)+52(A4) � � APProach 3� �------- 4 3 3 7 -------� � �3: LT= 713 � � � 2:RT= 50 � 6 5 9 4 , "- 50 � = 814 vph � TH= 35 I I I TH= 108 I �++ � <- 108 I_______________________________________) RT= 146 � v � LT= 8 � < v>> v- 8 � Step 8. INTERSECTION LEVEL OF � ------------- ---PP------ i I SERVICE � � <--A roach 2 � (compare step-7-with table 6) � Approach 1--> I � �--A--� � �------------ -------------� 280 -" < " > �_______________________________________� J1:LT= 521 � " � 4: RT= 4 � 241 +" + �+ � Step 9. RECALCULATE � TH= 39 � � � TH- 32 � 39 +> � � RT= 0 � � � LT= 16 �------- -------�Geometric Change: � � Approach 4� � � 1 3 � �Signal Change: � � � 6 2 4 � �Volume Change: � - _______________________________________+_______________________________________+_____________________________________-_ Step 3. IDENTIFY PHASING � Step 6a. CRITICAL VOLUMES, in vph � COMMENTS � � --^ (two phase signal) � � � A1B2 � � Approach 3� � � --> � � � � I <-- A2B1 � � � � � v-- � � � � i � A3B4 �------------- -------------� . I I � Approach 1 � i < � A4B3 � � I I � See Step 6b. � I � � Approach 2 � � i------------- ------------I I �j'--------------------------------------� � � � � U A1 --> A3 �^ B1 v-- B3 <I � � � � � v I � � � Approach 4� � Exclusive right turns reduced 0 g � A2 <-- A4 � B2 -- B4 �> � � V/C Ratio =.59 � ^________________________________________________________________________________________________________________________ U----- 0 � � � Critical Movement Analysis: PLANNING Calculation Form 1 �lntersection: BAYSHORE BLVD/AIRPORT BLVD-101 NB OFF Design Hour: PM PEAK jroblem Statement: APPROVED rl ------------------------------------------------------------------------------------------------------------------------ Step 1. IDENTIFY LANE GEOMETRY � Step 4. LEFT TURN CHECK � Step 6b. VOLUME ADJUSTMENT FOR � � � Approach 3:BAYSHORE � =--=---Approach-----� MULTIPHASE SIGNAL OVERLAP � � 1 1 1 � " � .-1- -2- -3- -4-� Possible Volume Adjusted� � R L � N �a.No. of change . 0 0 0 O�Prob- Critical Carryover Critical� 101 NB OFF � R T T T L � � intervals/hour . �able Volume to next Volume � '`� ----------- T H H H T -^-----------�b.LT capacity on : 0 0 o O�Phase in vph phase in vph � !. I APProach 1 << �>> --RT 1 � change (vPh) : �---------------------------------------� J 1 LT--"' v v v <"-RTH �c.G/C ratio . 0 0 0 0� 1 LTH-�> <--TH 1 �d.Opposing volume . 0 0 0 0� �TH--> w^^ <v-LTH � in vph : � JRTH-v> v--LT 1 �e.LT capacity on 0 0 0 0� __-----RT==v << �>> Approach 2 � green (vph) • � - L L T R R -------------�f:LT capacity in : 0 0 0 0� � T T H T T �AIRPORT � vph (b+e) . � � � H H ( �g.Left turn volume : 0 0 0 0� l � � i.n vPh � � Approach 4:DRIVEWAY �h.Is volume > cap. : : � (9>f) ? . � ^______________________________________+_______________________________________+ �I�Step 2. IDENTIFY VOLUMES, in vph � Step 5. ASSIGN LANE VOLUMES, in vph � � � � � � � I 3 2 2 � � � h �------- , � , d -------� i�3: LT= 457 TH= 32 RT= 318 ------------- � Approac 3� � � 2:RT= 95 � I I TH= 155 � V � LT= 3 I -------------� <--Approach 2 � A1B2 141(B2) OR 26(A1) 141� A2B1 155(A2) OR 3(B1) 155� A3B4 318(A3) OR 245(B4) 318� A4B3 93(A4) OR 45(B3) 93� � � � � _______________________________________� Step 7. SUM'OF CRITICAL VOLUMES � 141(B2)+155(A2)+318(A3)+93(A4) 2 3 5 "- 95 � = 707 vph + + � <- 155 �_______________________________________ v>> v- 3 � Step 8. INTERSECTION LEVEL OF � SERVICE � (compare step 7 with table 6) I A I Approach 1--> � I " " " - � �------------ -------------� 141 -" < � > �_______________=_______________________� J1:LT= 256 � " � 4: RT= 9 � 115 +" + �+ � Step 9. RECALCULATE � TH= 26 � � � TH= 39 � 26 +> � � RT= 0, � � � LT= 45 �------- -------�Geometric Change: � � Approach 4� � � 4 3 � �Signal Change: i � � 5 9 9 � �Volume Change: _______________________________________+______________=________________________+_______________________________________� Step 3. IDENTIFY PHASING � Step 6a. CRITICAL VOLUMES, in vph � COMMENTS � � --^ � (two phase signal) � , � A1B2 � � Approach 3� � i --> � � � � <-- A2B1 � v-- � � A3B4 v > < "' A4B3 � � � Approach 1 �------------- � See Step 6b. Approach_2__ �j -----------------------------------� � � � � J A1 --> A3 �^ B1 v-- B3 <� � � � � � y � I � � Approach 4� � Exclusive right turns reduced 0� � A2 <-- A4 � B2 -- B4 �> � � V/C Ratio =.51 � "�----_______------- --- _______________________________________________________________________________________ J � I J � � Critical Movement Analysis: PLANNING Calculation Form 1 , iintersection: AIRPORT BLVD/ANZA AVE Design Hour: AM PEAK ' �roblem Statementc APPROVED �____________________________________________________________________________________________ ------------------------------ Step 1. IDENTIFY LANE GEOMETRY � Step 4. LEFT TURN CHECK � Step 6b. VOLUME ADJUSTMENT FOR � I� � Approach 3:AIRPORT � -- -Approach-----� MULTIPHASE SIGNAL OVERLAP � ' � 1 1 1 � " � .-1= -2- -3- -4-� Possible Volume Adjusted� � R L � N �a.No. of change . 0 0 0 O�Prob- Critical Carryover Critical� ANZA � R T T T L � � intervals/hour . �able Volume to next Volume � ------------- T H H H T -^-----------�b.LT capacity on : 0 0 0 O�Phase in vph phase in vph � D APProach 1 <<.� >> --RT 1 � change (�Ph) • �---------------------------------------� 1 LT--"' v v v <"-RTH �c.G/C ratio . 0 0 0 O�A1B2 93(A1) OR 50(B2) 93� 1 LTH-�> <--TH �d.Opposing volume . 0 0 0 O�A2B1 49(A2) OR 22(B1) 49� TH--> <v-LTH 1 � in vph . �B4B3 138(B4) OR 82(B3) 138� � RTH-v> ""� v--LT' �e.LT capacity on : 0 0 0 O�A3A4 292(A3) OR 65(A4) 292� 1 RT--v << �>> Approach 2 � green (vph) • � � ------------- L L T R R -------------�f.LT capacity in : 0 0 0 0� � , � T T H T T IDRIVEWAY � vph (b+e) . � � � H H �. �g.Left turn volume : 0 0 0 0� � � � 1 1 1 � � in vph . - � � � Approach 4:AIRPORT �h.Is volume > cap. : • � _ � (g>f) ? : I . I __________________________+-------------______--------------------+__________________________________=====1 �_____________ ------------- -------------------- I� Step 2. IDENTIFY VOLUMES, in vph � Step 5. ASSIGN LANE VOLUMES, in vph � Step 7. SUM OF CRITICAL VOLUMES � I I Z Z 1 ' I I93(A1).+49(A2)+138(B4)+292(A3) � I APProach 3� �-------I 1 7 9 3 -------� � �3: LT= 138 � � � 2:RT= 23 � 9 3 2 8 "'- 23 � = 572 vph � TH= 565 I I I TH- 27 � ++ � � <+ 27 I_______________________________________I RT- 19 � v � LT- 22 � < v v> v+ 22 � Step 8. INTERSECTION LEVEL OF � -------------� I SERVICE I ------------- <--Approach 2 � � P P � ^j (com are ste__7-with table 6) � i i iAi i Approach 1--> � 50 -" � ------- � ^'------------- ------------- 0 +" < � � > � �_______________________________________ J1:LT= 50 � "' � 4: RT= 13 � 93 +> � �++ ( Step 9. RECALCULATE � TH= 93 � � � TH= 117 � 77 -v � � RT= 77 � � � LT= 82 �------- -------�Geometric Change: � � Approach 4� � � 8 6 5 1 � �Signal Change: � � � 2 5 2 3 � �Volume Change: � �--_ ___+_______________________________________+_______________________________________� Step 3 IDENTIFY PHASING � Step 6a. CRITICAL VOLUMES, in vph � COMMENTS � (two phase signal) � � � --" A1B2 I � Approach 3� � � --> � � � � I <-- A2B1 � � � � � �/-- , � � � � � � < B4B3 �------------- -------------� � I I � Approach 1 = � i A3A4 � � I I � See Step 6b. � < � � �• ', � Approach 2 � I �------------- ------------� � ---------------------------------------� � � � � ��� A1 --> A3 I^ B1 v-- B3 <I � � � � � v � � � � Approach 4� � Exclusive right turns reduced 0� � A2 <-- A4 � B2 --� B4 �> � � V/C Ratio =.42 � ----'___________________________________________________________________________________________________________________ --------------------------------------------------- � � � � � � � �.ntersection: AIRPORT BLVD/ANZA AVE ��roblem Statement: APPROVED ^----------------------------------- ----------------------------------- Critical Movement Analysis: PLANNING Calculation Form 1 Design Hour: PM PEAK --------------------------------------------------------------------------- Step 1. IDENTIFY LANE GEOMETRY � Step 4. LEFT TURN CHECK � Step 6b. VOLUME ADJUSTMENT FOR � � � Approach 3:AIRPORT � -------Approach-----� MULTIPHASE SIGNAL OVERLAP � � 1 1 1 � � � .-1- -2- -3- -4-� Possible Volume Adjusted� � R L � N �a.No. of change . 0 0 0 o�Prob- Critical Carryover Critical� ANZA � R T T T L � � intervals/hour . �able Volume to next Volume � ------------- T H H H T -^-----------�b.LT capacity on : 0 0 0 O�Phase in vph phase in vph � � APProach 1 < < � > > --RT 1 � change (vPh) : �----------------------------------- --� 1 LT--� v v v <"-RTH �c.G/C ratio . 0 0 0 O�A1B2 53(B2) OR 49(A1) 53� 1 LTH-"> <--TH �d.Opposing volume . 0 0 0 O�A2B1 151(A2) OR 45(B1) 151� TH--> <v-LTH 1 � in vph . �S4B3 302(B3) OR 56(B4) 302� � RTH-v> "' ""' v--LT �e.LT capacity on : 0 0 0 O�A3A4 213(A3) OR 123(A4) 213� 1 RT--v << �>> Approach 2 � green (vph) ------------- L L T R R -------------�f.LT capacity in : 0 0 � T T A T T �DRIVEWAY ( vph (b+e) . ,II�� H H � �g.Left turn volume : 0 0 J � 1 1 1 � � in vph � Approach 4:AIRPORT �h.Is volume > cap. : � (4>f) ? . '"_______________________________________+________________________________ J Step 2. IDENTIFY VOLUMES, in vph � Step 5. ASSIGN LANE VOLUMES, i � � � I � 1 2 � ^'� � Approach 3� �------- 2 8 1 5 . 13: LT= 56 � � � 2:RT= 24 � 5 8 3 6 J TH= 400 I � � TH= 106 � ++ � � RT= 25 � v � LT= 45 � < v v> ------------- -------------� � <--Approach 2 � � 0 0� � � � _______+_______________________________________ n vph � Step 7. SUM OF CRITICAL VOLUMES � �53(B2).+151(A2)+302(B3)+213(A3) -------� "'- 24 � = 719 vph <+ 106 �_______________________________________ v+ 45 � Step 8. INTERSECTION LEVEL OF � SERVICE � (compare step 7 with table 6) I A I Approach 1--> � 53 -" . � --- "" 1 �'------------ ------_------� 4 +" < " " > �_______________________________________� I1:LT= 57 � " � 4: RT- 15 � 49 +> � �++ � Step 9. RECALCULATE � "'� TH= 49 � � � TH= 230 � 47 -v � � RT= 47 � � � LT= 302 �------- 3 1 1 -------�Geometric Change: � -� Approach 4� � � 0 2 0 1 � �Signal Change: � I � 2 3 8 5 � �Volume Change: � +---------------------------------------+_______________________________________� �.'--------------------------------------- --------------------------------------- Step 3. IDENTIFY PHASING � Step 6a. CRITICAL VOLUMES, in vph � COMMENTS � � (two phase signal) � � � --" A1B2 � ( Approach 3� � i --> � � � � <-- A2B1 � � � � . � �-- � � � � � � I < B4B3 �------------- -------------� � > � � A3A4 v � Approach 1 See Step 6b. � � i Approach 2 � I i-------------I I ------------i � --------------------------------------� � � -� I ,� A1 --> A3 �^ Bl v-- B3 <� � � � � � � � � � � Approach 4� � Exclusive right turns reduced 0� � A2 <-- A4 � B2 -- B4 �> � � V/C Ratio =.52 � ________________________________________________________________________________________________________________________ ------------------------------------------- � � � � HCS: Unsignalized Intersections Release 2.ic AIRCOYAM.HCO Page 1 ----------------------------------------------------------------------- ----------------------------------------------------------------------- Center For Microcomputers In Transportation University of Florida - 512 Weil Hall Gainesville, FL 32611-2083 Ph: (904) 392-0378 ----------------------------------------------------------------------- ----------------------------------------------------------------------- Streets: (N-S) AIRPORT BLVD (E-W) COYOTE POINT DR Major Street Direction.... EW Length of Time Analyzed... 15 (min) Analyst ..............•••.. TN . Date of Analysis.......... 11/26/96 Other Information.........APPROVED - AM PEAK HOUR Two-way Stop-controlled Intersection ---------------------------------------------------------------------- � Eastbound � Westbound � Northbound � Southbound � L T R � L T R � L T R � L T R �---- ---- ----�---- ---- ----�---- ---- ----�---- ---- ---- No. Lanes � 1 1 0 �� 0 1 1 � 0 0 0 � 0 > 0 < 0 Stop/Yield � N� NI I ' Volumes � 305 100 � 48 6� � 8 137 PHF � .95 .95 � .95 .95� � .95 .95 Grade � 0 � 0 � � � MC's (�) � 0 � � � 0 0 SU/RV's (�)� 2 � � � 2 2 CV'S i�) � 0 I I I 0 0 PCE's �i.oi I I Il.oi i.oi ----------------------------------------------------------------------- Adjustment Factors Vehicle Critical Follow-up Maneuver Gap (tg) Time (tf) ------------------------------------------------------------------ Left Turn Major'Road 5.00 2.10 Right Turn Minor Road 5.50 2.60 Through Traffic Minor Road 6.00 3.30 Left Turn Minor Road 6.50 3.40 i � � HCS: Unsignalized Intersections Release 2.1c AIRCOYAM.HCO Page 2 ' .. ----------------------------------------------------------------------- ----------------------------------------------------------------------- � Worksheet for TWSC Intersection -------------------------------------------------------- Step 1: RT from Minor Street NB SB � -------------------------------------------------------- Conflicting Flows: (vph) 51 Potential Capacity: (pcph) 1305 Movement Capacity: (pcph) 1305 � � Prob. of Queue-Free State: ------___0.89 Step 2: LT from Major Street WB EB -------------------------------------------------------- � Conflicting Flows: (vph) 57 Potential Capacity: (pcph) 1610 Movement Capacity: (pcph) 1610 Prob. of Queue-Free State: ' 0.80 -------------------------------------------------------- � Step 4: LT from Minor Street-------------NB SB Conflicting Flows: (vph) 480 Potential Capacity: (pcph) 558 ^1 Major LT, Minor TH J Impedance Factor: 0.80 Adjusted Impedance Factor: 0.80 Capacity Adjustment Factor � � due to Impeding Movements 0.80 Movement Capacity: (pcph) -----------------------------------------------------44- ,_,� Intersection Performance Summary . � Avg. 95� Flow Move Shared Total Queue Approach Rate Cap Cap Delay Length LOS Delay � Movement (pcph) (pcph) (pcph)(sec/veh) (veh) (sec/veh) J-------- ------ ------ ------ ------- ------- ----- --------- SB L 8 446 > 1186 3.5 0.4 A 3.5 � SB R 145 1305 > EB L 324 1610 2.8 0.8 A 2.1 � Intersection Delay = 2.2 sec/veh � D � � D . � � '�� � HCS: Unsignalized Intersections Release,2.ic AIRCOYPM.HCO Page 1 Center For Microcomputers In Transportation D university of Florida 512 Weil Hall Gainesville, FL 32611-2083 Ph: (904) 392-0378 C Streets (N-S) AIRPORT BLVD (E-W) COYOTE POINT DR Major Street Direction.... EW Length of Time Analyzed... 15 (min) � Analyst .................. � - Date of Analysis.. 11/26/96 Other Information.. .APPROVED PM PEAK HOUR Two-way Stop-controlled Intersection D � Eastbound � Westbound � Northbound � Southbound � L T R I L T R � L T R � L T R �---- ---- ----�---- ---- ----�---- ---- ----�---- ---- ---- No. Lanes � 1 1 0 � 0 1 1 � 0 0 0 � 0 > 0 < 0 � Stop/Yield � N� N� � Volumes � 204 54 � 98 8� � 12 511 PHF � .95 .95 � .95 .95) � .95 .95 Grade ( 0 � 0 � � � D M��s �g� , o , , ► a o su/Rv�s c�>� z i I I 2 2 cv�s c�� � o � I I o 0 PCE's �i.oi � I �i.oi i.oi � ----------------------------------------------------------------------- Adjustment Factors Vehicle Critical Follow-up Maneuver Gap (tg) Time (tf) ------------------------------------------------------------------ Left Turn Major Road 5.00 2.10 Right Turn Minor Road 5.50 2.60 Through Traffic Minor Road 6.00 � 3.30 Left Turn Minor Road 6.50 3.40 � � � � � l� I� � I J � ,� HCS: Unsignalized Intersections Release 2.1c AIRCOYPM.HCO Page 2 • ---------------------------------- � -______---_Worksheet for TWSC Intersection ---------------------------------------- Step 1: RT from Minor Street NB SB ----------------------------------------------'---------- ;� Conflicting Flows: (vph) 103 Potential Capacity: (pcph) 1228 Movement Capacity: (pcph) 1228 Prob. of Queue-Free State: --------_0�56 � ------------------------------------------- ' Step 2: LT from Major Street WB EB -------------------------------------------------------- Conflicting Flows: (vph) 111 � � Potential Capacity: (pcph) 1518 Movement Capacity: (pcph) 1518 Prob. of Queue-Free State: 0.86 -------------------------------------------------------- nStep 4: LT from Minor Street-------------NB SB � U ---------------------------- ------------- � Conflicting Flows: (vph) 379 Potential Capacity: (pcph) 639 � Major LT, Minor TH I Impedance Factor: o•86 Adjusted Impedance Factor: 0.86 � Capacity Adjustment Factor � due to Impeding Movements 0.86 Movement Capacity: (pcph) • � -----------------------------------------------------548 Intersection Performance Summary � Avg. 95� Flow Move Shared Total Queue Approach Rate Cap Cap Delay Length LOS Delay —j Movement (pcph) (pcph) (pcph)(sec/veh) (veh) _____ (sec/veh) J-------- ------ ------ ------ ------- ------- --------- SB L 13 548 > 1193 5.6 2.7 B 5.6 � SB R 543 1228 > , EB L 217 1518 2.8 0.5 A 2.2 � Intersection Delay = 4.0 sec/veh � � � I�1 � �� i`f � � Critical Movement Analysis: PLFINNING Calculation Form 1 Tntersection: BAYSHORE BLVD/101 NB OFF Design Hour: AM PEAK 4roblem Statement: APPROVED+PENDING �_______________________________________________________________________________________________________________________ ------------------------------------------------- Step 1. IDENTIFY LANE GEOMETRY � Step 4. LEFT TURN CHECK � Step 6b. VOLUME ADJUSTMENT FOR � � Approach 3:BAYSHORE � -------Approach-----� MULTIPHASE SIGNAL OVERLAP � � 1 1 1 � � � .-1- -2- -3- -4-� Possible Volume Adjusted� J � R L � N �a.No. of change . 0 0 o O�Prob- Critical Carryover Critical� 101 NB OFF � R T T T L � � intervals/hour . �able Volume to next Volume � ------------- T H H H T -------------�b.LT capacity on : 0 0 0 O�Phase in vph phase in vph � D APProach 1 << �>> �--RT � change (vPh) : �---------------------------------------� 1 LT--� v v v <�-RTH �c.G/C ratio . 0 0 0 O�A1B2 339(A1+B1) OR 188(A2+B2) 339� 1 LTH-�> <--TH 1 �d.Opposing volume . 0 0 0 O�B4B3 58(B3) OR 15(B4) 58� TH--> <v-LTH � in vph . �A3A4 319(A4) OR 268(A3) 319� RTH-v> ��� v--LT �e.LT capacity on : 0 0 0 0� � 1 RT--v << �>> Approach 2 � green (vph) : � � ------------ L L T R R -------------�f.LT capacity in : 0 0 0 0� � � T T H T T �DRIVEWAY � vph (b+e) . � � I � H H � �g.Left turn volume : 0 0 0 0� � D , � � � , , �ri �h . . , � � Approach 4:BAYSHORE �h.Is volume > cap. : • � � (4>f) ? : � � ---+_______________________________________+_______________________________________) --------------------------------------- ------------------------------- I�IStep 2. IDENTIF'Y VOLUMES, in vph � Step 5. ASSIGN LANE VOLUMES, in vph � Step 7. SUM OF CRITICAL VOLUMES � J : � � 2 2 � (339(A1B1)+58(S3)+319(A4)+0O � � Approach 3� �------- 5 1 6 1 -------� � � 3: LT= 15 � � � 2:RT= 5 �� 6 2 8 5 "+ 5 � = 716 vph � TH= 480 I I I TH= $ I ++ � � <- e I_______________________________________I RT= 56 � v � LT= 12 � < v v> v+ 12 � Step S. INTERSECTION LEVEL OF � ------------- ------� I SERVICE � � Approach 1--> J1:LT= 332 � <--Approach 2 � � � i�s -------------) 157 I 4: RT= 4 � 18 � (compare step 7 with table 6) . � ------- - I I--A--I +" +> ., .. � �_______________________________________ �++ � Step 9. RECALCULATE TH= 18 � � � TH= 634 � 327 -v � RT= 327 � � � LT= 58 �------- 3 3 -------�Geometric Change: � I Approach 4I � � 5 1 1 � �Signal Change: _ 8 9 5 4 � �Volume Change: � � _______________________________________+___-___________________________________+_______________________________________ r Step 3. IDENTIFY PHASING � Step 6a. CRITICAL VOLUMES, in vph � COMMENTS � (two phase signal) � � --" AND <-- A1B2 AND � � Approach 3� � --> OR v-- /OR A2B1 � � I I � < B4B3 � � � � > � � I "' A3A4 v � � � Approach 1 See Step 6b. D � Approach 2 � I �------------- ------------� � �j---------------------------------------� � � � I U A1 --> A3 �^ B1 v-- B3 <� � � � � � y � � � � Approach 4� � Exclusive right turns reduced 0% � A2 <-- A4 �• B2 -- B4 �> � � V/C Ratio =.5 � ________________________________________________________________________________________________________________________ -------------------------- D- . 0 N� ;� � Critical Movement Analysis: PLANNING Cal 1 t' E 1 cu a ion orm ntersection: BAYSHORE BLVD/101 NB OFF Design Hour: PM PEAK roblem Statement: APPROVED+PENDING ------------------------------------------------------------------------------------------------------------------------ Step 1. IDENTIFY LANE GEOMETRY � Step 4. LEFT TURN CHECK � Step 6b. VOLUME ADJUSTMENT FOR � , � Approach 3:BAYSHORE � -------Approach-----� MULTIPHASE SIGNAL OVERLAP � I � 1 1 1 � � � .-1- -2- -3- -4-� Possible Volume Adjusted� � R L � N �a.No. of change . 0 0 0 O�Prob- Critical Carryover Critical� 101 NB OFF � R T T T L � � intervals/hour . �able Volume to next Volume � �----------- T H H H T -------------�b.LT capacity on : 0 0 0 O�Phase in vph phase in vph � Approach 1 . < < � > > "--RT � change (vPh) : �---------------------------------------� 1 LT--� v v v <"-RTH �c.G/C ratio . 0 0 0 O�A1B2 163(A1+B1) OR 134(A2+B2) 163� 1 LTH-"> <--TH 1 �d.Opposing volume . 0 0 0 O�B4B3 103(B3) OR 16(B4) 103� D TH--> ^^^ <v-LTH � in vph : . �A3A4 510(A3) OR 206(A4) 510� RTH-v> v--LT �e.LT capacity on • 0 0 0 0� � 1 RT--v << �>> Approach 2 � green (vph) • � � -------------I L L T R R I-------------if.LVPT capacity in : 0 0 0 0� � D T T H T T DRIVEWAY h(b+e) : � � � H H � �g.Left turn volume : 0 0 0 0� � � 1 1 1 � � in vph � � � Approach 4:BAYSHORE �h.Is volume > cap. : : � - ? . 'I�______________________________________+==(g>f)====_______________________=====I=====___________________; _________=====I `�Step 2. IDENTIFY VOLUMES, in vph � Step 5. ASSIGN LANE VOLUMES, in vph � Step 7. SUM OF CRITICAL VOLUMES j � � 1 3 5 � �163(A1B1)+103(B3)+510(A3)+0() � � APProach 3� �------- 5 6 1 1 -------� ' � �3: LT= 16 � � ( 2:RT= 2 � 0 0 0 6 �+ 2 � = 776 vph � TH= 870 I I I TH= 5 I ++ � I <- 5 I________________��_�______________=====i RT= 150 � v � LT= 11 � < v v> v+ 11 � Step 8. INTERSECTION LEVEL OF ----------- -------------i I SERVICE I � <--Approach 2 � (compare step-7_with table 6) � � � � A � � ^� Approach 1--> � 12� '" � ______" � {------------ -------------� 93 +" < " " > �________________________________=______� J 1:LT= 219 � " � 4: RT= 2 � 34 +> � �++ � Step 9. RECALCULATE � TH= 34 � � � TH= 409 � 152 -v � � RT= 152 � � � LT= 103 �------- 1 2 2 -------�Geometric Change: � � � Approach 4� � � 0 0 0 � �Signal Change: � � -I---------------3-6-4-2-�-------�Volume Change: � _______________________________________+______---------------------------------+_______________________________________� Step 3. IDENTIFY PHASING � Step 6a. CRITICAL VOLUMES, in vph � CO[VIMENTS � "� - � (two phase signal) � � J-" AND <-- A1B2 AND � � APProach 3� � i --> OR v-- /OR A2B1 � � I I � � � � � � I B4B3 A3A4 � � � ------------- -------------� Approach 1 � ,^ � See Step 6b. � � J I � Approach 2 � I i-------------I I ------------i � J� --------------------------------------� � � � � A1 --> A3 � B1 v-- , B3 <� I. � � � � �� � � � � Approach 4� � Exclusive right turns reduced 0� � A2 <-- A4 � B2 --" B4 �' � � V/C Ratio =.54 � �--------------------------------________________________________________________________________________________---_____ !� - ---------------------- --- � J � � � Critical Movement Analysis: PLANNING Calculation Form 1 �ntersection: BAYSAORE BLVD/AIRPORT BLVD-101 NB OFF � Design Hour: AM PEAK Iroblem Statement: APPROVED+PENDING LJ_______________________________________________________________________________________________________________________ Step 1. IDENTIFY LANE GEOMETRY � Step 4. LEFT TURN CHECK � Step 6b. VOLUME ADJUSTMENT FOR � � � Approach 3:BAYSHORE � -------Approach-----� MULTIPHASE SIGNAL OZ/ERLAP � 1 1 1 � " � .-1- -2- -3- -4-� Possible VoTume Adjusted� � R L � N �a.No. of change . 0 0 0 O�Prob- Critical Carryover Critical� 101 NB OFF � R T T T L � � intervals/hour . �able Volume to next Volume � ------------- T H H H T -------------�b.LT capacity on : 0 0 0 O�Phase in vph phase in vph � � A roach 1 < < > > "--RT 1 chan e (vph) ---------------------------------- PP I I 3 • �""'" � 1 LT--� v v v <"-RTH �c.G/C ratio . 0 0 0 O�A1B2 280(B2) OR 39(Al) 280� 1 LTH-"> <--TH 1 �d.Opposing volume . 0 0 0 O�A2B1 111(A2) OR 8(B1) 111� TH--> <v-LTH � in vph . �A3B4 417(B4) OR 146(A3) 417� RTH-v> ��" v--LT 1 �e.LT capacity on : 0 0 0 O�A4B3 52(A4) OR 16(B3) 52� �----__RT==v << �>> Approach 2 � green (vph) : � � - L L T R R -------------�f.LT capacity in : 0 0 0 0� � � T T H T T �AIRPORT � vph (b+e) . � I � H H � �g.Left turn volume : 0 0 0 0� � � � � 1 � � in vph . . � � � Approach 4:DRIVEWAY �h.Is volume > cap. . • � _ � (4>f) ? : � , � �j'______________________________________+__________=____________________________+_______________________________________� ( IStep 2. IDENTIFY VOLIIMES, in vph � Step 5. ASSIGN LANE VOLUMES, in vph � Step 7. SUM OF CRITICAL VOLUMES � U ,� � 1 3 4 � �280(B2)+111(A2)+417(B4)+52(A4) � I APProach 3� �------- 4 3 8 1 -------� � D3: LT= 799 � � � 2:RT= 50 � 6 5 2 7 "'- 50 � = 860 vph � TH= 35 I I I TH= 111 � �++ � <- 111 I_______________________________________I RT= 146 � v � LT= S � < v>> v- 8 � Step 8. INTERSECTION LEVEL OF � ------------- -------------i I SERVICE � �<--Approach 2 � (compare step-7_with table 6) i i � � � I B I � Approach 1--> ------- r•------------ -------------� 280 -� < � > �_______________________________________� 1:LT= 521 � " � 4: RT= 4 � 241 +" + �+ � Step 9. RECALCULATE i � TH= 39 � � � TH= 32 � 39 +> � RT= 0 � � � LT= 16 �------- -------�Geometric Change: � � Approach 4 � � - 1 3 � �Signal Change: � � � � � 6 2 4 � �Volume Change: � _ ===+J______________________________________+_______________________________________� � Step 3 IDENTIFY PHASING � Step 6a. CRITICAL VOLUMES, in vph � COMMENTS � � (two phase signal) � � � -- A1S2 � � Approach 3� � � � --> <-- A2B1 � � � v-- � � � I I a�s4 I------------- ------------- v > � Approach 1 < " A4B3 � See Step 6b. D �. Approach 2 � I �------------- ------------� . � � � � � I -----------------------------------� � � � A1 -> A3 � B1 v-- B3 <� � � � � I v- � I � � Approach 4� � Exclusive right turns reduced o� � A2 <-- A4 � B2 --� $4 �> � � V/C Ratio =.63 � ---------------------------------------------------------------------- ---------------- �---------------------------------------------------------------------------------- I � J � D Critical Movement Analysis: PLANNING Calculation Form 1 � �ntersection: BAYSHORE BLVD/AIRPORT BLVD-101 NB OFF Design Hour: PM PEAK �>roblem Statement: APPROVED+PENDING ------------------------------------------------------------------------------------------------------------------------ Step 1. IDENTIFY LANE GEOMETRY � Step 4. LEFT TURN CHECK � Step 6b. VOLUME ADJUSTMENT FOR � � � Approach 3:BAYSHORE � -- -Approach-----� MULTIPHASE SIGNAL OVERLAP � � 1 1 1 � "' � .-1- -2- -3- -4-� Possible Valume Adjusted� � R L � N �a.No. of change . 0 0 0 O�Prob- Critical Carryover Critical� 101 NB OFF � R T T T L � � intervals/hour . �able Volume to next Volume � f --------- T H H H T -------------�b.LT capacity on : 0 0 0 O�Phase in vph phase in vph � � Approach 1 << �>> "--RT 1 � change (vPh) : �---------------------------------------) 1 LT--" v v v <"-RTH �c.G/C ratio . 0 0 0 O�A1B2 141(B2) OR 26(A1) 141� 1 LTH-"> <--TA 1 �d.Opposing volume . 0 0 0 O�A2B1 176(A2) OR 3(Bl) 176� D TH--> ^^^ <v-LTA � in vph : �A3B4 318(A3) OR 252(B4) 318� RTH-v> v--LT 1 �e.LT capacity on • 0 0 0 O�A4B3 93(A4) OR 45(B3) 93� _--____RT=-v << �>> Approach 2 � green (vph) • � � - L L T R R -------------�f.LT capacity in . 0• 0 0 0� � � T T H T T �AIRPORT � vph (b+e) . � � � i H 1 H i ig.Left turn volume : 0 0 0 0� � in vph � � � Approach 4:DRIVEWAY �h.Is volume > cap. : : � � (s>f) ? : � I j'_______________________________________+_______________________________________+__________________________________=====1 ',� Step 2. IDENTIFY VOLUMES, in vph � Step 5. ASSIGN LANE VOLUMES, in vph � Step 7. SUM OF CRITICAL VOLUMES � � � 3 Z 2 � �141(B2)+176(A2)+318(A3)+93(A4) � � APProach 3� �------- 1 3 2 5 -------� � � 3: LT= 472 � � � 2:RT= 95 � 8 2 0 2 "- 95 � = 728 vph � TH- 32 ( � � TH- 176 � �++( <- 176 �_______________________________________� RT- 318 � v � LT= 3 � < v>> v- 3 � Step 8. INTERSECTION LEVEL OF � _____________I I SERVICE I ----------- <--Approach 2 � � P P � � (com are ste__7-with table 6) � Approach 1--> � � I--A--I • � � ------------ -------------� 141 -" . < " > �_______________________________________� � 1:LT= 256 � " � 4: RT= 9 � 115 +" + �+ � Step 9. RECALCULATE � TH= 26 I � � TH= 39 � 26 +> � � RT= 0 � � � LT= 45 �------- -------�Geometric Change: � J � Approach 4� � � 4 3 � �Signal Change: � I I_________________5_9_9_I_____ IVolume Change: � _______________________________________+________-----------------------------__+_________________________=________=____� Step 3. IDENTIFY PHASING � Step 6a. CRITICAL VOLUMES, in vph � COMMENTS � � _-^ (two phase signal) � � � A1B2 � � Approach 3� � i --> � � � � <-- A2B1 � � � � � � v-- � � � � ' � A3B4 �------------- -------------� � I I � Approach 1 � i I I A4B3 i See Step 6b. � I � � Approach 2 � I i-------------I ' ------------i � �--------------------------------------� � i i � A1 --> A3 � Bl v-- B3 <I � � � v" � � � � Approach 4� � Exclusive right turns reduced 0� � A2 <-- A4 � B2 -- B4 �> � � V/C Ratio =.53 � -j________________________________________________________________________________________________________________________ J � � �_ � Critical Movement Analysis: PLANNING Calculation Form 1 �ntersection: AIRPORT BLVD/ANZA AVE Design Hour: AM PEAK Jroblem Statement: APPROVED+PENDING ------------------------------------------------------------------------------------------------------------------------ Step 1. IDENTIFY LANE GEOMETRY � Step 4. LEFT TURN CHECK � Step 6b. VOLUME ADJUSTMENT FOR � i�� Approach 3:AIRPORT � -------Approach-----� MULTIPHASE SIGNAL OVERLAP � ' � 1 1 1 � "' � .-1- -2- -3- -4-� Possible Volume Adjusted� � R L � N �a.No. of change , 0 0 0 O�Prob- Critical .Carryover Critical� ANZA � R T T T L � � intervals/hour . . (able Volume to next Volume � �------------ T H H H T -------------�b.LT capacity on : 0 0 0 O�Phase in vph phase in vph � I'I� A roach 1 << >> "--RT 1 chan e( h) ---------------------------------- PP � � 4 �P • �----- � 1 LT--" v v v <"-RTH �c.G/C ratio . 0 0 0 O�A1B2 93(A1) OR 50(B2) 93� 1 LTH-"> <--TH �d.Opposing volume . 0 0 0 O�A2B1 49(A2) OR 22(B1) 49� D TH--> w^^ <v-LTH 1 � in vph : �B4B3 138(B4) OR 90(B3) 138� .RTH-v> v--LT �e.LT capacity on 0 0 0 O�A3A4 335(A3) OR 67(A4) 335� 1 RT--v << �>> Approach 2 � green (vph) • � � L L T R R -------------�f.LT capacity in : 0' 0 0 0� � n � T T H T T �DRIVEWAY � vph (b+e) � I I f I � H H � �g.Left turn volume : 0 0 0 0� � J � 1 1 1 I I in vph � � � Approach 4:AIRPORT �h.Is volume > cap. : : � _ � (s>f) ? : � I �� ______________________________________+_______________________________________+__________________________________=====1 Step 2. IDENTIFY VOLUMES, in vph � Step 5. ASSIGN LANE VOLUMES, in vph � Step 7. SUM OF CRITICAL VOLUMES � I � 3 3 1 � �93(A1)+49(A2)+138(B4)+335(A3) � � Approach 3� �------- 1 1 3 3 -------� � ��3: LT= 138 � � � 2:RT= 23 � 9 6 5 8 "'- 23 � = 615 vph � TH= 651 I I I TH= 27 � ++ �( <+ 27 I_______________________________________I RT= 19 � v I LT= 22 � < v v> v+ 22 � Step 8. INTERSECTION LEVEL OF � ----------- I SERVICE � '_j------------ --� <--Approach 2 � � (compare step 7 with table 6) � � , , ------- � . i i i A i i .-�Approach 1--> � 50 -"' � ------- � ------ -------------� 0 +" < " " > �__________________________________=____� ,,� 1:LT= 50 � " � 4: RT= 13 � 93 +> � �++ � Step 9. RECALCULATE � TH= 93 � � I TH= 120 � 88 -v � � RT= 88 � � � LT= 90 �------- -------�Geometric Change: � � Approach 4 � � 9 6 5 1 � �Signal Change: � � � � � 0 7 4 3 � �Volume Change: � _______________________________________+_______________________________________+_______________________________________� Step,3. IDENTIFY PHASING � Step 6a. CRITICAL VOLUMES, in vph � COMMENTS � � __^ (two phase signal) � � A1B2 � � Approach 3� � ( --> � � � � • � <-- A2B1 ' � � � � � � �-- I I I I � � < B4B3 �------------- -------------� . � I � � Approach 1 � i A3A4 � � i � � See Step 6b. � i � i Approach 2 � I ------------- ------------ � � � � � � --------------------------------------� � � � � �A1 --> A3 � B1 v-- B3 <I � � � � � �^ � � � � Approach 4� � Exclusive right turns reduced 0� � A2 <-- A4 � B2 --� B4 �> � � V/C Ratio =.45 � �-_______________________________________________________________________________________________________________________ J------------------------ � I � � � � Critical Movement Analysis: PLANNING Calculation Form 1 �:ntersection: AIRPORT BLVD/ANZA AVE Design Hour: PM PEAK J�roblem Statement: APPROVED+PENDING ------------------------------------------------------------------------------------------------------------------------ Step l. IDENTIFY LANE GEOMETRY . � Step 4. LEFT TURN CAECK � Step 6b. VOLUME ADJUSTMENT FOR � � � Approach 3:AIRPORT � -------Approach-----� MULTIPHASE SIGNAL OVERLAP ( � 1 1 1 � " � .-1- -2- -3- -4-� Possible Volume Adjusted� � R L � N �a.No. of change . 0 0 0 O�Prob- Critical Carryover Critical� ANZA � R T T T L � � intervals/hour . �able Volume to next Volume � ^•------------ T H H H T -^-----------�b.LT capacity on : 0 0 0 O�Phase in vph phase in vph � II Approach 1 << �>> --RT 1 � change (vPh) : �---------------------------------------� �-% 1 LT--� v v v <�-RTH �c.G/C ratio . 0 0 0 O�A1S2 53(B2) OR 49(A1) 53� 1 LTH-"> <--TH �d.Opposing volume . 0 0 0 O�A2B1 151(A2) OR 45(B1) 151� D TH--> ^^^ <v-LTH 1 � in vph : �B4B3 361(B3) OR 56(B4) 361� RTH-v> v--LT �e.LT capacity on • 0 0 0 O�A3A4 221(A3) OR 134(A4) 221� 1 RT--v << �>> Approach 2 � green (vph) • � � -------------I L L T R R I-------------if.LV�T capacity in : 0 0 0 0� � D T T H T T DRIVEWAY h(b+e) : � I � H H � �g.Left turn volume : 0 0 0 0� � � 1 1 1 � � in vph � � � Approach 4:AIRPORT �h.Is volume > cap. : : � � (4>f) ? : � � n'====---------------------------------- --------------------------------------- ---------------------------------------� - - -+---------------------------------------+--------------------------------------- I,� Step 2. IDENTIFY VOLUMES, in vph � Step 5. ASSIGN LANE VOLUMES, in vph � Step 7. SUM OF CRITICAL VOLUMES � � � � 1 2 � �53(B2)+151(A2)+361(B3)+221(A3) � � APProach 3� �------- 2 9 2 5 --- ---� � �3: LT= 56 � � � 2:RT= 24 � ' S 6 1 6 "'- 24 � = 786 vph � TH= 416 � � � TH= 106 � ++ � � <+ 106 �_______________________________________� __RT=--25-__� v � LT= 45 � < v v> v+ 45 � Step S. INTERSECTION LEVEL OF � � -------------� I SERVICE------ I <--Approach 2 � � (compare step 7 with table 6) � � � � � � A � � Approach 1--> � 53 '" � ""- " � � ------------ -------------� 4 +" < " " > �_______________________________________� �1:LT= 57 � "' � 4: RT= 15 � 49 +> � �++ � Step 9. RECALCULATE � TH= 49 � � � TH= 253 � 49 -v � � RT= 49 � � � LT= 361 �------- 3 1 1 -------�Geometric Change: � � Approach 4 � � 6 3 1 1 � �Signal Change: i ( I � I 1 4 9 5 � �Volume Change: _______________________________________+_______________________________________+___________________________=__==_______� Step 3. IDENTIFY PHASING � Step 6a. CRITICAL VOLUMES, in vph � COMMENTS � � __^ (two phase signal) � � A1B2 � � Approach 3� � � --> <-- A2B1 � v-- � < B4B3 > � � " A3A4 ,-, v I � � � � � Approach 1 � � See Step 6b. � � � Approach 2 I D---------------------------------------� � � � � A1 --> A3 � B1 v-- B3 <� � � � � � � v^ � � I � Approach 4� � Exclusive right turns reduced 0� � A2 <-- A4 � B2 --" B4 �> � � V/C Ratio =.57 � ----------------------------------------------------------------------------------------------------- � J � � HCS: Unsignalized Intersections Release 2.ic AIRCOYAM.HCO Page 1 � ----------------------------------------------------------------------- Center For Microcomputers In Transportation • University of Florida � 512 Weil Hall � Gainesville, FL 32611-2083 Ph: (904) 392-0378 ----------------------------------- - - - -- Streets: (N-S) AIRPORT BLVD (E-W) COYOTE BOINT DR Major Street Direction.... EW � Length of Time Analyzed::. 15 (min) Analyst.......... . TN Date of Analysis.......... 11/26/96 Other Information.........APPROVED+PENDING - AM PEAK HOIIR D Two=way_Stop=controlled_Intersection----------------------------------- � Eastbound � Westbound � Northbound � Southbound � L T R I L T R � L T R � L T R D �____ ____ ____,____ ____ ____,____ ____ ____�____ ____ ____ No. Lanes � 1 1 0 � 0 1 1 � 0 0 0 � 0 > 0 < 0 Stop/Yield � N� N� � Volumes � 363 100 � 48 6� � 8 146 PHF � .95 .95 � .95 .95� � .95 .95 � Grade � 0 � 0 � � 0 MC's (�) � 0 � � � 0 0 SU/RV's (%)� 2 � � � 2 2 CtT' s(�) � 0 � � � 0 0 � PCE'5------�i_oi----------I--------------�--------------�i,oi------i_oi JAdjustment Factors Vehicle Critical Follow-up � Maneuver _________________Gap_(tg)----________Time-(tf) Left Turn Major Road 5.00 2.10 Right Turn Minor Road 5.50 2.60 � Through Traffic Minor Road 6.00 3.30 Left Turn Minor Road 6.50 3.40 � � � u I iJ � � HCS: Unsignalized Intersections Release 2.1c AIRCOYAM.HCO Page 2 ----------------------------------------------------------------------- ----------------------------------------------------------------------- � Worksheet for TWSC Intersection ------------------------'-------------------------------- Step 1: RT from Minor Street NB SB J-------------------------------------------------------- Conflicting Flows: (vph) 51 Potential Capacity: (pcph) 1305 Movement Capacity: (pcph) • 1305 � Prob. of Queue-Free State: -------------------------0.88 J Step 2: LT from Major Street WB EB -------------------------------------------------------- � Conflicting Flows: (vph) 57 Potential Capacity: (pcph) 1610 Movement Capacity: (pcph) 1610 Prob. of Queue-Free State: 0.76 -------------------------------------------------------- JStep 4: LT from Minor Street_____________NB SB Conflicting Flows: (vph) 541 Potential Capacity: (pcph) 515 J Major LT, Minor TH Impedance Factor: 0.76 Adjusted Impedance Factor: 0.76 Capacity Adjustment Factor � ^� due to Im edin Movements 0.76 J Movement Capacity: (pcph) ----------P------------------------------------------392 � Intersection Performance Summary Avg. 95% Flow Move Shared Total Queue Approach Rate Cap Cap Delay Length LOS Delay � Movement (pcph) (pcph) (pcph)(sec/veh) (veh) -____ (sec/veh) -------- ------ ------ ------ ------- ------- --------- SB L 8 392 > 1172 3.6 0.5 A 3.6 —i SB R 156 1305 > JEB L 386 1610 2.9 1.1 A 2.3 -� Intersection Delay = 2.4 sec/veh J � 0 0 � � � � ] HCS: Unsignalized Intersections Release 2.1c AIRCOYPM.HCO Page 1 Center For Microcomputers In Transportation � University of Florida 512 Weil Hall Gainesville, FL 32611=2083 Ph: (904) 392-0378 � _____________________________________ Streets: (N-S) AIRPORT BLVD (E-W) COYOTE POINT DR Major Street Direction.... EW Length of Time Analyzed... 15 (min) I� Analyst ................... TN Date of Analysis.......... 11/26/96 Other Information.........APPROVED+PENDING - PM PEAK HOUR Two-way Stop-controlled Intersection I� � Eastbound � Westbound � Northbound � Southbound � L T R � L T R � L T R � L T R (---- ---- ----�---- ---- ----�---- ---- ----�---- ---- ---- No. Lanes � 1 1 0 � 0 1 1 � 0 0 0 � 0 > 0 < 0 � Stop/Yield � N� N� � Volumes � 214 54 � 98 8) � 12 573 PHF � .95 .95 � .95 .95I � .95 .95 Grade � 0 � 0 � � � "'1 MC's (�) � 0 � � � 0 0 J CV/sV��)�%)i O i I I 0 0 PCE's �i.oi � I �i.oi i.oi � -------------------------- --------------------------------------------- � � � � � � � � � � Adjustment Factors Vehicle Critical Follow-up Maneuver Gap (tg) Time (tf) ------------------------------------------------------------------ Left Turn Major Road 5.00 2.10 Right Turn Minor Road 5.50 2.60 Through Traffic Minor Road 6.00 3.30 Le£t Turn Minor Road 6.50 3.40 � � . HCS: Unsignalized Intersections Release 2.1c AIRCOYPM.HCO Page 2 ----------------------------------------------------------------------- � __-----_---Worksheet for TWSC Intersection ------------------------------------ Step l: RT from Minor Street NB SB � -------------------------------------------------------- Conflicting Flows: (vph) 103 Potential Capacity: (pcph) 1228 Movement Capacity: (pcph) 1228 Prob. of Queue-Free State: __-______0�50 � ------------------------------------------- Step 2: LT from Major Street WB EB -------------------------------------------------------- � Conflicting Flows: (vph) 111 Potential Capacity: (pcph) 1518 Movement Capacity: (pcph) 1518 Prob. of Queue-Free State: 0.85 -------------------------------------------------------- � Step 4: LT from Minor Street_____________NB SB Conflicting Flows: (vph) 389 Potential Capacity: (pcph) 630 ^� Major LT, Minor TH J Impedance Factor: 0.85 Adjusted Impedance Factor: 0.85 Capacity Adjustment Factor � � due to Im edin Movements 0.85 P 4 Movement Capacity: (pcph) -----------------------------------------------------5-- Intersection Performance Summary � Avg.. 95� Flow Move� Shared Total Queue Approach Rate Cap Cap Delay Length LOS Delay � Movement (pcph) (pcph) (pcph)(sec/veh) (veh) _-_-- (sec/veh) SB L 13 536 > 1196 6.2 3.3 B 6.2 "j SB R 609 1228 > JEB L 227 1518 2.8 0.6 A 2.2 � Intersection Delay = 4.4 sec/veh � � � � � � Critical Movement Analysis: PLANNING ' Calculation Form 1 Intersection: BAYSHORE BLVD/101 NB OFF Design Hour: AM PEAK �roblem Statement: APPROVED+PROJECT '------------------------------------------------------------�---------------------------------------------------------- Step 1. IDENTIFY LANE GEOMETRY � Step 4. LEFT TURN CHECK � Step 6b. VOLUME ADJUSTMENT FOR � � Approach 3:BAYSHORE � -------Approach-----� MULTIPHASE SIGNAL OVERLAP � � 1 1 1 � " � .-1- -2- -3- -4-� Possible Volume Adjusted� � R L � N �a.No. of change . 0 0 0 O�Prob- Critical Carryover Critical� 01 NB OFF � R T T T L � � intervals/hour . �able Volume to next Volume � ------------- T H H H T -------------�b.LT capacity on t 0 0 0 O�Phase in vph phase in vph � D APProach 1 << �>> "--RT � change (vPh) : �---------------------------------------� 1 LT--� v v v <�-RTH �c.G/C ratio . 0 0 0 O�A1B2 308(A1+B1) OR 188(A2+B2) 308� 1 LTH-�> <--TH 1 �d.Opposing volume . 13 314 0 O�B4B3 58(B3) OR 15(B4) 58� TH--> <v-LTH � in vph . �A3A4 326(A4) OR 274(A3) 326� RTH-v> "' "" v--LT �e.LT capacity on . 0 0 0 0� � 1 RT--v << �>> Approach 2 � green (vph) : � � �•------------ L L T R R -------------�f.LT Capacity in : 0 0 0 0� � � T T H T T �DRIVEWAY, � vph (b+e) . � i � H H � �g.Left turn volume : 332 12 0 0� D � 1 1 1 � � in vph . � � � Approach 4:BAYSHORE �h.Is volume > cap. : YES �YES � - � (4>f) ? : � � _______________________________________+_______________________________________+______________________=________________� D Step 2. IDENTIFY VOLUMES, in vph � Step 5. ASSIGN LANE VOLUMES, in vph � Step 7. SUM OF CRITICAL VOLUMES � � � 2 2 � �308(A1B1)+58(B3)+326(A4)+0() � � APProach 3� � �------- 5 1 7 1 -------� � D 3: LT= 15 � � � 2:RT= 5 � 6 8 4 5 "+ 5 � = 692 vph � TH= 491 � � I TH= 8 � ++ � � <- 8 �_______________________________________� ___RT=-_56_--� v � LT= 12 � < v v> v+ 12 � Step 8. INTERSECTION LEVEL OF � SERVICE I <--Approach 2 � � (compare step 7 with table 6) � ( I � � � A � � Approach 1--> � 175 -" � '- "'"' � -----=------- -------------� 157 +� < " " > �_______________________________________� �1:LT- 332 � "' � 4: RT= 4 � 18 +> � �++ � Step 9. RECALCULATE i TH= 18 � � � TH= 647 � 296 -v � RT= 296 � � � LT= 58 �------- 3 3 -------�Geometric Change: � � Approach 4� � � 5 2 2 � �Signal Change: � � � I 8 6 2 4 � �Volume Change: i '---+_______________________________�_______ _ ___+_______________________________________ J Step 3. IDENTIFY PHASING � Step 6a. CRITICAL VOLUMES, in vph � COMMENTS I (two phase signal) � � --" AND <-- A1B2 AND � � APProach 3� � i � �--> OR v-- /OR A2B1 � I I I I � < B4B3 � � � � > � � � � � � I " A3A4 �------------- -------------� . � I � � Approach 1 � i � � See Step 6b. � I , � APProach 2 � � � i-------------I I ------------i � � ---------------------------------------� � � i � � A1 --> A3 �^ Bl v-- B3 <� � � � I � � � � � Approach 4� � Exclusive right turns reduced 0� � A2 <-- A4 � B2 --"' B4 �> � � V/C Ratio =.49 � � : � � � � J Critical'Movement Analysis: PLANNING Calculation Form 1 ntersection: BAYSHORE BLVD/101 NB OFF Desi Hour• PM PEAK roblem Statement: APPROVED+PROJECT 4-____________________________________________________________________________________�_____________________�_____------ ----- ------ Step 1. IDENTIE'Y LANE GEOMETRY � Step 4. LEFT TURN CHECK � Step 6b. VOLUME ADJUSTNIS�iT FOR � � � Approach 3:BAYSHORE � -------Approach-----� MULTIPHASE SIGNAL OVERLAP � 1 1 1( � � .-1- -2- -3- -4-� Possible Volume Adjusted� � R L � N �a.No. of change . 0 0 0 O�Prob- Critical Carryover Critical� 101 NB OFF � R T T T L � � intervals/hour . �able Volume to next Volume � �------------- T H H H T -------------�b.LT capacity on : 0 0 0 O�Phase in vph phase in vph � iAPProach 1 << �>> "--RT � change (vPh) : �---------------------------------------� ,� 1 LT--� v v v <"-RTH �c.G/C ratio . 0 0 0 O�A1B2 169(A1+B1) OR 134(A2+B2) 169� 1 LTH-"'> <--TH 1 �d.Opposing volume . 7 192 0 O�B4B3 103(B3) OR 16(B4) 103� �--> <v-LTH � in vph . �A3A4 518(A3) OR 213(A4) 518� � RTH-v> "�� v--LT �e.LT capacity on : 0 0 0 0� � 1 RT--v << �>> Approach 2 � green (vph) • � � ------------- L L T R R -------------�f.LT capacity in : 0 0 0 0) � � T T H T T �DRIVEWAY � vph (b+e) . � I � ( H H � �g.Left turn volume : 219 11 0 0� � � 1 1 1 � � in vph � � � Approach 4:BAYSHORE �h.2s volume > cap. . YES YES : � _ � (g>f) ? : � � ___+_______________________________________+_______________________________________� JStep 2. IDENTIFY VOLUMES, in vph � Step 5. ASSIGN LANE VOLUMES, in vph � Step 7. SUM OF CRITICAL VOLUMES � --- I � � � � � � 1 3 5 � �169(A1B1)+103(B3)+518(A3)�0() � � Approach 3� �------- 5 6 1 1 -------� � �3: LT= 16 � �' � 2:RT= 2 � 0 8 8 6 "+ 2 � = 790 vph � TH= 886 I I I TH= 5 I ++ � � <- s I_______________________________________I ___RT=-150---� v � LT= 11 � < v v> v+ 11 � Step 8. INTERSECTION LEVEL OF � SERVICE � � <--Approach 2 � � (compare step 7 with table 6) i --} j i I A I I Approach 1--> � 1z� -� � ------- � �j------------ -------------� 93 +" < " " > �__________________________________==___� J l:LT= 219 � " � 4: RT= 2 � 34 +> � �++ � Step 9. RECALCULATE � ' TH= 34 � � � TH= 423 � 158 -v RT= 158 � � � LT= 103 �------- 1 2 2 -------�Geometric Change: � ^� � Approach 4� � � 0 1 1 � �Signal Change: • i I � I 3 3 1 2 � �Volume Change: �______________________________________+_______________________________________+_______________________________��_��___� Step 3. IDENTIFY PHASING � Step 6a. CRITICAL VOLUMES, in vph � COMMENTS � � (two phase signal) � � � --" AND <-- A1B2 AND � I APProach 3� I I --> OR v-- /OR A2B1 � ( I I � < B4B3 � � � � � > � � � � � � ""1 " A3A4 �------------- -------------� � J I � � Approach 1 � � See Step 6b. I � Approach 2 � I Ji-------------I I ------------i i �;--------------------------------------� I I i I J A1 --> A3 �^ B1 v-- B3 <� � � � I v � � � � Approach 4� � Exclusive right turns reduced 0� � A2 <-- A4 �• B2 --� B4 �> � � V/C Ratio =.55 � J___________________________________________________________________________ -, J � J � Critical Movement Analysis: PLANNING Calculation Form 1 nteYsection: BAYSHORE BLVD/AIRPORT BLVD-101 NB OFF Design Hour: AM PBAK �roblem Statement: APPROVED+PROJECT ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ Step 1. IDENTIFY LANE GEOMETRY � Step 4. LEFT TURN CHECK � Step 6b. VOLUME ADJUSTMENT FOR � n � Approach 3:BAYSHORE � -------Approach-----� MULTIPHASE SIGNAL OVERLAP � U � 1 1 1 � "' � .-1- -2- -3- -4-) Possible Volume Adjusted� � R L � N �a.No. of change . 0 0 0 O�Prob- Critical Carryover Critical� 101 NB OFF � R T T T L � f intervals/hour . �able Volume to next Volume � �- T H H A T -------------�b.LT capacity on : 0 0 0 O�Phase in vph phase in vph � Approach 1 < < � > > "--RT 1 ( change (vPh) : �---------------------------------------� 1 LT--� v v v <"'-RTH �c.G/C ratio . 0 0 0 O�A1B2 276(B2) OR 39(A1) 276� 1 LTH-"> <--TH 1 �d.Opposing volume . 0 0 0 O�A2B1 114(A2) OR 8(B1) 114� � Tt-I--> ^^^ <v-LTH � in vph : �A3B4 387(B4) OR 146(A3) 387� RTH-v> v--LT 1 �e.LT capaCity on 0 0 0 O�A483 52(A4) OR 16(B3) 52� RT--v << �>> Approach 2 � green (vph) • � ( ------------- L L T R R -------------�f.LT capacity in : 0 0 0 OI { � T T H T T �AIRPORT � vph (b+e) . � I D � H H � (g.Left turn volume : 0 0 0 0� f � 1 � � i.n vPh � � � Approach 4:DRIVEwAY �h.2s volume > cap. . : _ � (g>f) ? : � I +-------------------------- ------------+-------------------- ------------------� - ---------------------------------- -------------------------------- ------ Step 2. IDENTIFY VOLUMES, in vph � Step 5. ASSIGN LANE VOLUMES, in vph � Step 7. SUM OF CRITICAL'VOLUMES � � I 1 3 3 I I2�6(B2)+114(A2)+387(B4)+52(A4) � � Approach 3� �------- 4 3 5 8 --- -� � D 3: LT= 746 � � � 2:RT= 63 � 6 5 8 7 �- 63 � = 829 vph � TH= 35 � � � TH= 114 � I++ I <- 114 �_______________________________________� -__RT=-146___� v � LT= S � < v>> v- S � Step 8. INTERSECTION LEVEL OF � --- --� � SERVICE � � <--Approach 2 � � (compare step_7_with table 6) i Approach 1--> � � �--8--� � �•------------ ------_------� 276 -" < � > �_______________________________________� J1:LT= 521 � � � 4: RT- 4 � 244 +" + I+ � Step 9. RECALCULATE � TH= 39 � � � TH= 32 � 39 +> � i RT= 0 � � � LT= 16 �------- -------�Geometric Change: � Approach 4� � � 1 3 � �Signal Change: i � � 6 2 4 � �Volume Change: _______________________________________+_______________________________________+________________________=====evo���_=__� Step 3. IDENTIFY PHASING � Step 6a. CRITICAL VOLUMES, in vph ( CONIMENTS � � (two phase signal) � � � --" A1B2 � � Approach 3� I I --> <-- A2B1 � � � � i v-- � � ( � � A3B4 �------------- -------------� � I I � Approach 1 � i ^ I I A4B3 i See Step 6b. � � , j � Approach 2 � I LJ�------------- ------------� I � � � � I Ir'---------------------------------------� � � � i� A1 --> A3 �^ B1 v-- B3 <� � � � � � v � � � � Approach 4� � Exclusive right �.urns reduced 0� � A2 <-- A4 � B2 -- B4 �> � � V/C Ratio =.6 � �________________________________________________________________________________________________________________________ J • ' � � � '� Critical Movement Analysis: PLANNING Calculation Form 1 �'ntersection: BAYSHORE BLVD/AIRPORT BLVD-101 NB OFF Design Hour: PM PEAK Jroblem Statement: APPROVED+PROJECT ------------------------------------------------------------------------------------------------------------------------ Step 1. IDENTIFY LANE GEOMETRY � Step 4. LEFT TURN CHECK � Step 6b. VOLUME ADJLTSTMSNT FOR � � � Approach 3:BAYSHORE � -------Approach-----� MULTIPHASE SIGNAL OVERLAP � � 1 1 1 � � � .-1- -2- -3- -4-� Possible Volume Adjusted� � R L � N �a.No. of change . 0 0 0 O�Prob- Critical Carryover Critical� 101 NB OFF � R T T T L � � intervals/hour . �able Volume to next Volume � ----------- T H H H T -------------�b.LT capacity on : 0 0 0 O�Phase in vph phase in vph � I� Approach 1 << �>> " RT 1 � change (vph) • �---------------------------------------� 1 LT--� v v v <"-RTH �c.G/C ratio . 0 0 0 O�AlB2 139(B2) OR 26(Al) 139� 1 LTH-�> <--TH 1 �d.Opposing volume . 0 0 0 O�A2B1 161(A2) OR 3(B1) 161� TH--> <v-LTH � in vph . �A3B4 318(A3) OR 290(B4) 318� D RTH-v> ��� v--LT 1 �e.LT capacity on : 0 0 0 O�A4B3 93(A4) OR 45(B3) 93� RT--v << �>>� Approach 2 � green (vph) • � � ------------- L L T R R -------------�f.LT capacity in : 0 0 0 0� � � T T H T T �AIRPORT � vph (b+e) . � I j� � H H � �g.Left turn volume : 0 0 0 0� { L.) � 1 � � in vph � � � Approach 4:DRIVEwAY �h.Is volume > cap. . . � - � (9>f) ? : � , � �":______________________________________+_______________________________________+_______________________________________� � Step 2. IDENTIFY VOLUMES, in vph � Step 5. ASSIGN LANE VOLUMES, in vph � Step 7. SUM OF CRITICAL VOLLJMES � J ----- � � � 3 2 2 � �139(B2)+161(A2)+318(A3)+93(A4) � � APProach 3� �------- 1 3 6 9 -------� i ,n 3: LT= 555 I � � 2:RT= 109 � 8 2 4 0 �- 109 � = 711 vph � UTH= 32 � � � TH- 161 � �++ I <- 161 �_______________________________________� RT- 318 � v � LT= 3 � < v>> v- 3 � Step 8. INTERSECTION LEVEL OF � ------------- -------------� I SERVICE I � <--Approach 2 � � (compare step_7_with table 6) i � I I A I i Approach 1--> � � ------- �------------- ------_------� 139 -� < � > �_______________________________________� J1:LT= 256 � " � 4: RT- 9 � 117 +" + �+ � Step 9. RECALCULATE i _ TH= 39 26 +> TH- 26 � � � � RT= 0 � � � LT= 45 �------- -------�Geometric Change: � Approach 4 � � 4 3 � �Signal Change: i I I � � 5 9 9 � �Volume Change: �______________________________________+_______________________________________+_____________________________�_____=___� Step 3. IDENTIFY PHASING � Step 6a. CRITICAL VOLUMES, in vph � COMMENTS � � (two phase signal) � � J --" A1B2 i i APProach 3i i i --> <-- A2B1 � � � � � 'v-- � � � . � � � � A3B4 �------------- -------------� � I I � Approach 1 � i I I A4S3 i See Step 6b. � I �� Approach 2 � I LJ i-------------I I ------------i �j---------------------------------------� � � � � U A1 --> A3 � w B1 v-- B3 <I � � � �` � � � � � � Approach 4� � Exclusive right turns reduced 0� � A2 <-- A4 � B2 --" B4 (> � � V/C Ratio =.52 � ______________________________________________________________________________________ --------- -------------- --------------------- --------- � ___- ---------------------- � � � i� � ' '� Critical Movement Analysis: PLANNING Calculation Form 1 �ntersection: AIRPORT BLVD/ANZA AVE Design Hour: AM PEAK Jroblem Statement: APPROVED+PROJECT ------------------------------------------------------------------------------------------------------------------------ Step 1. IDENTIFY LANE GEOMETRY � Step 4. LEFT TURN CHECK � Step 6b. VOLUME ADJUSTMSNT FOR � �� � Approach 3:AIRPORT � -------Approach-----� MULTIPHASE SIGNAL OVERLAP � � 1 1 1 � " � .-1- -2- -3- -4-� Possible Volume Adjusted� � R L � N �a.No. of change . 0 0 0 O�Prob- Critical Carryover Critical� ANZA � R T T T L � � intervals/hour . �able Volume to next Volume � ----------- T H i H T -^-----------�b.LT capacity on : 0 0 0 O�Phase in vph phase in vph � ''� Approach 1 < < > > --RT 1 � change (vPh) : �---------------------------------------� 1 LT--" v v v <"'-RTH �c.G/C ratio . 0 0 0 O�A1B2 93(A1) OR 49(B2) 93� 1 LTH-"> <--TH �d.Opposing volume . 0 0 0 O�A2B1 48(A2) OR 21(B1) 48� TH--> <v-LTH 1 � in vph . �B4B3 138(B4) OR 92(B3) 138� � RTH-v> """' v--LT �e.LT capacity on : 0 0 0 O�A3A4 310(A3) OR 75(A4) 310� 1 RT--v << �>> Approach 2 � green (vph) • � � ------------- L L T R R ------------- �f.LT capacity in : 0 0 0 0 � � � T T H T T �DRIVEWAY � vph (b+e) .' � ' I i� � H H � �g.Left turn volume c o 0 a o� I � 1 1 1 � � in vph � � � Approach 4:AIRPORT �h.Is volume > cap. : : � _ � (3>f) ? : � � +------- -------------------------------+---------------------=-------------- - � - - - - - - -------------- -------- --------------------------------------- Step 2. IDENTIFY VOLUMES, in vph � Step 5. ASSIGN LANE VOLUMES, in vph � Step 7. SUM OF CRITICAL VOLUMES � � � 2 3 1 � �93(Al)+48(A2)+138(B4)+310(A3) � � Approach 3� �------- 1 9 1 3 -------� � �3: LT= 138 � � � 2:RT= 23 � 9 1 0 8 "'- 23 � = 589 vph � TH= 600 � � � TH= 27 � ++ � � <+ 27 �_______________________________________� RT= 19 � v � LT= 22 � < v v> v+ 21 � Step 8. INTERSECTION LEVEL OF � ------------- -------------I SERVICE I <--Approach 2 I � (compare step 7 with table 6) � � ------- � � � � A � � Approach l--> --� 49 -" � '---"' I ------ ------=---- � 0 +" < " "' > �_______________________________________� 1:LT= 50 � " � 4: RT- 13 � 93 +> � �++ � Step 9. RECALCULATE � TH= 93 � � � TH= 136 � 75 -v � � RT= 75 � � � LT= 92 �------- -------�Geometric Change: � � Approach 4� � � 9 7 6 1 � �Signal Change: � I � --_----2-5 2 3 � �Volume Change: � _______________________________________+________________----------_____________+_______________________________________� Step 3. IDENTIFY PHASING � Step 6a. CRITICAL VOLUMES, in vph � COMMENTS � � __^ � (two phase signal) � � A1B2 � � Approach 3� � i --> � � � � <-- A2B1 � � � � � v-- � � � � ' � � < B4B3 �------------- -------------� � i � � Approach 1 � i A3A4 � � i � � See Step 6b. � � � I � Approach 2 � I i-------------I I ------------i � �•--------------------------------------� � � � � J A1 --> A3 � w B1 v-- B3 <I � � � � � � � � � � Approach 4� � Exclusive right turns reduced 0� � A2 <-- A4 � B2 --" B4 �> � � � V/C Ratio =.43 � � ____________________________________________________________________________________ � � J � � Critical Movement Analysis: PLANNING Calculation Form 1 Intersection: AIRPORT BLVD/ANZA AVE Design Hour: PM PEAK �Problem Statement: APPROVED+PROJECT ""1----------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------------ Step 1. IDENTIFY LANE GEOMETRY � Step 4. LEFT TURN CHECK � Step 6b. VOLUME ADJUSTMENT FOR � "-1 � Approach 3:AIRPORT � -- -Approach-----� MULTIPHASE SIGNAL OVERLAP � � � 1 1 1 � " � :-1- -2- -3- -4-� Possible Volume Adjusted� � R L � N �a.No. of change 0 0 0 O�Prob- Critical Carryover Critical� ANZA � R T T T L � � intervals/hour . �able Volume to next Volume � --------- T H H H T -------------�b.LT capacity on : 0 0 0 O�Phase in vph phase in vph � Approach 1 << �>> "--RT 1 � change (vPh) : �---------------------------------------� 1 LT--" v v v <"-RTH �c.G/C ratio . 0 0 0 O�A1B2 55(Al) OR 53(B2) 55� 1 LTH-"> <--TH �d.Opposing volume . 0 0 0 O�A2B1 151(A2) OR 45(B1) 151� TH--> <v-LTH 1 � in vph . �B4B3 312(B3) OR 56(B4) 312� � RTH-v> �"� v--LT �e.LT capacity on : 0 0 0 O�A3A4 232(A3) OR 133(A4) 232� 1 RT--v << �>> Approach 2 � green (vph) • � � ---------- L L T R R -------------�f.LT capacity in : 0 0 0 0� � � T T H T T �DRIVEWAY � vph (b+e) . � I � j � A H � �g.Left turn volume : 0 0 0 0� � J� 1 1 1 � � in vph � � � Approach 4:AIRPORT �h.2s volume > cap. . . � � (9>f) ? : � � -______________________________________+_______________________________________+_______________________________________� JStep 2. IDENTIFY VOLUMES, in vph � Step 5. ASSIGN LANE VOLUMES, in vph � Step 7. SUM OF CR.ITICAL VOLUMES � I I 2 2 , � �55(A1)+151(A2)+312(B3)+232(A3) � � APProach 3� �-------' 2 0 3 5 -------� ( � 3: LT= 56 � � � 2:RT= 24 � 5 7 2 6 "- 24 � = 750 vph � TH= 438 � � � TH- 106 � ++ � � <+ 106 �_______________________________________� __-RT=--25_-_� v � LT= 45 � < v v> v+ 45 � Step 8. INTERSECTION LEVEL OF � ___I � SERVICE I � <--Approach 2 � � (compare step_7_with table 6) � � � � � A � � Approach 1--> � 53 " � """" � �------------- - - - 4 +" < � � � -- ----- --- � �_______________________________________� J1:LT= 57 � "' � 4: RT= 15 � 49 +> � �++ � Step 9. RECALCULATE i TH= 49 � � � TH= 250 �-55_-v 3 1 1 I-------�Geometric Change: � RT= 55 � � � LT- 312 �- -- 1 3 1 1 �Signal Change: I � APProach 4� � � --------------'--------------------'---, � � 2 3 8 5 � �Volume Change• '-----+--------------------------------------- _______________________________________+_________________________________------ Step 3. IDENTIFY PHASING � Step 6a. CRITICAL VOLUMES, in vph � COMMENTS � __^ � (two phase signal) � A1B2 � � Approach 3� � --> � ( � � <-- A2B1 � � � � _, v-- � � � � I< B4B3 �------------- -------------� � � Approach 1 � � I A3A4 i See Step 6b. � � ------------- APProach 2 � ------------� � � � -----------------------------------� � � � � '� A1 --> A3 � w B1 v-- B3 <I � � � � � � � � � � Approach 4� � Exclusive right turns seduced 0� � A2 <-- A4 • � B2 --� $4 �> � � V/C Ratio =.55 � ^_______________________________________________________________________________________________________________________ ----------------------------------- J � � J � HCS: Unsignalized Intersections Release 2.1c AIRCOYAM.HCO Page 1 � Center For Microcomputers In Transportation University of Florida 512 Weil Hall Gainesville, FL _ 32611-2083 � Ph�-i904)_392=0378_____________________________________________________ Streets: (N-S) AIRPORT BOULEVARD (E-W) COYOTE POINT DRIVE Major Street Direction.... EW � Length of Time Analyzed... 60 (min) . Analyst ................... JSW Date of Analysis.......... 2/11/97 • Other Information.........APPRO�IED+PROJECT - AM PEAK HOUR � Two-way Stop-controlled Intersection ______________________________________________________________________ � Eastbound � Westbound � Northbound � Southbound � L T R � L T R( L T R � L T R �---- ---- ----�---- ---- ----�---- ---- ----�---- ---- ---- � No. Lanes � 1 1 0 � 0 1 1 � 0 0 0 � 0 > 0 < 0 Stop/Yield � N� N� I Volumes � 306 100 � 48 6� � 8 141 PHF � .95 .95 � .95 .95� � .95 .95 � Grade � 0 � U• � � � Mc�s (�) � o � I I o 0 su/Rv�s c�)� o � � � o 0 cv�s c�) I o I I I � ° � PCE's -----I1-00----------I--------------I--------------I1�00 i.00 ------ ---------- � • Adjustment Factors Vehicle Critical Follow-up Maneuver Gap (tg) Time (tf) � ------------------------------------------------------------------ Left Turn Major Road 5.00 2.10 Right Turn Minor Road 5.50 2.60 Through Traffic Minor Road 6.00 3.30 � Left Turn Minor Road 6.50 3.40 � � � � � � � � � HCS: Unsignalized Intersections Release 2.ic AIRCOYAM.HCO Page 2 _________________________________�_____________________________________ ] Worksheet for TWSC Intersection -------------------------------------------------------- Step 1: RT from Minor Street NB SB � -------------------------------------------------------- Conflicting Flows: (vph) 51 Potential Capacity: (peph) 1305 Movement Capacity: (pcph) 1305 � Prob. of Queue-Free State: ______---0�89 Step 2: LT from Major Street WB EB -------------------------------------------------------- � Conflicting Flows: (vph) 57 Potential Capacity: (pcph) 1610 Movement.Capacity: (pcph) 1610 Prob. of Queue-Free State: 0.80 -------------------------------------------------------- � Step 4: LT from Minor_Street-------------NB___-----___3B -------------------- � Conflicting Flows: (vph) 481 Potential Capacity: (pcph) 558 ' � Major LT, Minor TH Impedance Factor: o•8� Adjusted Impedance Factor: 0.80 Capacity Adjustment Factor ' � due to Impeding Movements 0.80 Movement Capacity: (pcph) 446 -------------------------------------------------------- J intersection Performance Summary Avg. 95� Flow Move Shared Total Queue Approach - � Rate Cap Cap Delay Length LOS Delay J Movement (pcph) (pcph) (pcph)(sec/veh) (veh) _---- (sec/veh) -------- ------ ------ ------ ------- ------- --------- SB L 8 446 > 1188 3.5 0.5 A 3.5 � SB R 148 1305 > EB L 322 1610 2.8 0.9 A 2.1 � Intersection Delay = 2.3 sec/veh � J � J � J � � --� � 0 � � � � � � J � J � � � J � � � � � � -, � � HCS: Unsignalized Intersections Release 2.ic AIRCOYPM.HCO Page 1 Center For Microcomputers In Transportation University of Florida 512 Weil Hall Gainesville, FL 32611-2083 Ph: (904) 392-0378 --------------------------------------------- - Streets: (N-S) AIRPORT BOULEVARD (E-W) COYOTE POINT DRIVE Major Street Direction.... EW Length of Time Analyzed... 60 (min) Analyst ................... JSW Date of Analysis.......... 2/li/97 Other Information.........APPROVED+PROJECT - PM PEAK HOUR Two-way Stop-controlled Intersection _______________________________________________________________________ � Eastbound � Westbound � Northbound � Southbound � L T R � L T R � L T R � L T R �---- ---- ----�---- ---- ----�---- ---- ----�---- ---- ---- No. Lanes � 1 1 0 � 0 1 1 � 0 0 0 � 0 > 0 < 0 Stop/Yield � N� N� � Volumes � 205 54 � 98 S� � 12 515 PHF � .95 .95 � .95 .95� � .95 .95 Grade � 0 � 0 � � 0 MC's (�1 � 0 � � � 0 0 sv/Rv�s c�)� o � � � o 0 cv�s (�> � o I I I � ° PCE's �i.00 � I �i.00 i.00 ----------------------------------------------------------------------- Adjustment Factors Vehicle Critical Follow-up Maneuver Gap (tg) Time (tf) ------------------------------------------------------------------ Left Turn Major Road 5.00 2.10 Right Turn Minor Road 5.50 2.60 Through Traffic Minor Road 6.00 3.30 Left Turn Minor Road 6.50 3.40 � HCS: Unsignalized Intersections Release 2.1c AIRCOYPM.HCO Page 2 ] Worksheet for TWSC Intersection -------------------------------------------------------- Step 1: RT from Minor Street NB SB �-------------------------------------------------------- � Conflicting Flows: (vph) 103 Potential Capacity: (pcph) 1228 Movement Capacity: (pcph) 1228 -i Prob. of Queue-Free State: ____0�56 J ------------------------------------------------ Step 2: LT from Major Street WS EB -------------------------------------------------------- � Conflicting Flows: (vph) 111 Potential Capacity: (pcph) 1518 J Movement Capacity: (pcph) 1518 Prob. of Queue-Free State: 0.86 -------------------------------------------------------- � Step 4: LT from Minor Street _------____-NB- SB Conflicting Flows: (vph) 380 Potential Capacity: (pcph) 638 ^j Major LT, Minor TH JImpedance Factor: 0.86 Adjusted Impedance Factor: 0.86 Capacity Adjustment Factor � due to Impeding Movements o.86 Movement Capacity: (pcph) ------------------------------------------------------4- � Intersection Performance Summary Avg. 95� Flow Move Shared Total Queue Approach � __---__- -Rate_ -Cap_- -Cap-- -Delay- -Length _LOS_ __Delay_- Movement (pcph) (pcph) (pcph)(sec/veh) (veh) (sec/veh) SB L 13 547 > 1193 5.6 2.9 B 5.6 � SB R 542 1228 > EB L 216 1518 2.8 0.5 A 2.2 � intersection Delay = 4.0 sec/veh � � 1 J � � � � J � J � Critical Movement Analysis: PLANNING � Calculation Form 1 Intersection: BAYSHORE SLVD/101 NB OFF Design Hourc AM PEAK Problem Statement: APPROVED+PENDING+PROJECT � ------------------------------------------------------------------------------------------------------------------------ Step 1. IDENTIFY LANE GEOMETRY � Step 4. LEFT TURN CHECK � Step 6b. VOLUME ADJUSTMENT FOR � � � Approach 3:BAYSHORE � -------Approach-----� MULTIPHASE SiGNAL OVERLAP � 1 1 1 � � � .-1- -2- -3- -4-� Possible Volume Adjusted� � R L � N �a.No. of change . 0 0 0 O�Prob- Critical Carzyover Critical) 101 NB OFF � R T T T L � � intervals/hour . �able Volume to next Volume � -`------------- T H H H T -------------�b.LT capacity on : 0 0 0 O�Phase in vph phase in vph � J APProach 1 << �>> �--RT � change (vPh) : �------------------------�---------------� 1 LT--" v v v <�-RTH �c.G/C ratio . 0 0 0 O�A1B2 358(A1+B1) OR 188(A2+B2) 358� 1 LTH-"> <--TH 1 �d.Opposing volume . 0 0 0 O�B4B3 58(B3) OR 15(B4) 58� TH--> <v-LTH � in vph . �A3A4 326(A4) OR 276(A3) 326� � RTH-v> ""' � v--LT �e.LT Capacity on . 0 0 0 0� � J___1_ RT--v << �>> Approach 2 � green (vph) : � � ------- L L T. R R -------------�f.LT capacity in : 0 0 0 0� � � � T T H T T �DRIVEWAY � vph (b+e) . � � � � H H � �g.Left turn volume : 0 0 0 0� � � 1 1 1 � � in vph � � � Approach 4:BAYSHORE �h.Is volume > cap. : : � _ � (e>f) ? : � I �---------------------------------------+________________________---------------+________________________=_________=====1 --------------------------------- --------------- JStep 2. IDENTIFY VOLUMES, in vph � Step 5. ASSIGN LANE VOLUMES, in vph � Step 7. SUM OF CRITICAL VOLUMES � � � 2 2 � �358(A1B1)+58(B3)+326(A4)+0() � � APProach 3� �------- 5 2 7 1 -------� � � 3: LT= 15 � � I 2:RT= 5 � 6 0 6 5 �+ 5 � = 742 vph � TH= 496 � � I TH= a � ++ � � <- 8 �_______________________________________{ RT= 56 � v � LT= 12 � < v v> v+ 12 � Step 8. INTERSECTION LEVEL OF � �------------- -------------i I SERVICE I <--Approach 2 � (compare step 7 with table 6) � � � j i IAI t Approach i--> � 175 -" � "" "-- � �------------- ------------- 157 +" < � " > � �_______________________________________ J1:LT= 332 � � � 4: RT= 4 � 18 +> � �++ � Step 9. RECALCULATE � TH= 18 � � � TH= 647 � 346 -v RT= 346 � � � LT= 58 �------- 3 3 -------�Geometric Change: � J � Approach 4� � � 5 2 2 � �Signal Change: i I I ____8_6-2-4-I--- IVolume Change: _______________________________________+___________________----------------____+_______________________________________� Step 3. IDENTIFY PHAS2NG � Step 6a. CRITICAL VOLUMES, in vph � COMMENTS � � - � (two phase signal) � � -" AND <-- A1B2 AND � � APProach 3� � i --> OR v-- /OR A2B1 � I I I I < B4B3 � � � � � > � � � � � • � � " A3A4 �------------- -------------� � � � � Approach 1 � � See Step 6b. � i J� • Approach 2 � � �------------- ------------� � I --------------------------------------� � � � � � A1 --> A3 �^ B1 v-- B3 <� � � � � � v � � � � Approach 4� � Exclusive right turns reduced 0� � A2 r- A4 � B2 --"' B4 �> � � V/C Ratio =.52 � ---------------------------'-------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------- � � � J � � J Critical Movement Analysis: PLAt7NING Calculation Form 1 �ntersection: BAYSHORE BLVD/101 NB OFF Design Hour: PM PEAK ,� roblem Statement: APPROVED+PENDING+PROJECT ----------------------------------------------------------------------------------------------------- ------ ----------- Step 1. IDENTIFY LANE GEOMETRY � Step 4. LEFT TURN CHECK � Step 6b. VOLUME ADJUSTMENT FOR � � ( Approach 3:BAYSHORE � -------Approach-----� MULTIPHASE SIGNAL OVERS�AP � J � 1 1 1 � "' � :-1- -2- -3- -4-� Possible Volume Adjusted� � R L � N �a.No. of change . 0 0 0 o�Prob- Critical Carryover Critical� 101 NB OFF � R T T T L � � intervals/hour . �able Volume to next Volume � ;� ----------- T H H H T -^-----------�b.LT capacity on : 0 0 0 O�Phase in vph phase in vph�� Approach 1 < < � > > --RT � change (vPh) : �---------------------------------------� 1 LT--"' v v v <"-RTH �c.G/C ratio . 0 0 0 O�A1B2 184(A1+B1) OR 134(A2+B2) 184� 1 LTH-"'> <--TH 1 �d.Opposing volume 0 0 0 O�B4B3 103(B3) OR 16(B4) 103� I� TH--> w^^ <v-LTH � in vph : �A3A4 519(A3) OR 213(A4) 519� RTH-v> v--LT �e.LT capacity on 0 0 0 0� � -___1- RT--v << �>> Approach 2 � green (vph) ' � I ------- L L T R R -------------�f.LT capacity in : 0 0 0 0� � � T T H T T �DRIVEWAY � vph (b+e) : � I � H H � �g.Left turn volume : 0 0 0 0� � 1 1 1 � � in vph � � � Approach 4:BAYSHORE �h.Is volume > cap. : : � _ � (9>f) ? . �______________________________________+_______________________________________+_______________________________________� J Step 2. IDENTIFY VOLUMES, in vph � Step 5. ASSIGN LANE VOLUMES, in vph � Step 7. SUM OF CRITICAL VOLUMES � ' I � 1 3 5 � �184(A1B1)+103(B3)+519(A3)+0() � I APProach 3� �------- 5 6 1 1 -------� � �3: LT= 16 � � � 2:RT= 2 � 0 9 9 6 "+ 2 � = 806 vph � TH= 887 I I I TH= 5 I ++ � � <- 5 I==a==a�a==_____________________________I RT= 150 � v � LT= il � < v v> v+ 11 � Step 8. INTERSECTION LEVEL OF � J ------------ -------------I � SERVICE I <--Approach 2( � (compare step 7 with table 6) i � � � A � � Approach 1--> � 12� -� � ------- � �------------ -------------� 93 +" < " " > �_______________________________________� J 1:LT= 219 � " � 4: RT= 2( 34 +> � �++ � Step 9. RECALCULATE � TH= 34 � � � TH= 423 � 173 -v � i � RT= 173 � � � LT= 103 �------- 1 2 2 -------�Geometric Change: J � Approach 4� � � 0 1 1 � �Signal Change: i I � 3 3 1 2 � �Volume Change: _ ___+_______________________________________+_______________________________________� Step 3 IDENTIFY PHASING � Step 6a. CRITICAL VOLUMES, in vph � CONIMENTS � ""j _ (two phase signal) � � J-" AND <-- A1B2 AND � � APProach 3� � i --> OR V-- /OR A2B1 � I I I � < B4B3 � � � � � -� � � � � � � � I " A3A4 �------------- -------------� � I � � Approach 1 � � See Step 6b I,J � Approach 2 � I i-------------I I ------------i � -----------------------------------� � i i � � A1 --> A3 � B1 v-- B3 <� � � � v" � � � � Approach 4� � Exclusive right turns reduced 0� � A2 <-- A4 � B2 --� B4 �> � � V/C Ratio =.57 � -------'---------------------------------------------------------------------------------------------------------------- --------------------------------------------------------------- � � ,� � � Critical Movement Analysis: PLA27NING Calculation Form 1 �;ntersection: BAYSHORE BLVD/AIRPORT BLVD-101 NB OFF i `,�roblem Statement: APPROVED+PENDING+PROJECT Design Hour: AM PEAK ------------------------------------------------------ ------ -------------------------- - ---- - - -------------------- Step 1. IDENTIFY LANE GEOMETRY � Step 4. LEFT TURN CHECK � Step 6b. VOLDME ADJUST[�NT FOR � �� Approach 3:BAYSHORE � -------Approach-----� MULTIPHASE SIGNAL OVERLAP � ' � 1 1 1 � � � .-1- -2- -3- -4-� Possible Volume Adjusted� � R L � N (a.No. of change . 0 0 0 O�Prob- Critical CarYyover Critical� 101 NB OFF � R T T T L � � intervals/hour . �able Volume to next Volume � ^------------- T H H H T -------------�b.LT capacity on : 0 0 0 O�Phase in vph. phase in vph � i I APProach 1 << �>> "--RT 1 � change (vPh) : �---------------------------------------� �''� 1 LT--" v v v <"-RTH �c.G/C ratio . 0 0 0 O�A1B2 280(B2) OR 39(A1) 280� 1 LTH-"> <--TH 1 �d.Opposing volume : 0 0 0 O�A2B1 117(A2) OR S(S1) 117� � TH--> ^^^ <v-LTH � in vph : �A3B4 435(B4) OR 146(A3) 435� RTH-v> v--LT 1 �e.LT capacity on 0 0 0 O�A4B3 52(A4) OR 16(B3) 52� RT--v << �>> Approach 2 � green (vph) • � � -------------I L L T R R I-------------�f.LT capacity in : 0 0 0 0� � T T H T T AIRPORT � vph (b+e) . � I � � g H � �g.Left turn volume : 0 0 0 0� � in vph • � � � � Approach 4IDRIVEWAY �h.Is volume > cap. : : � � (q>f) � : I I r'-______________________________________+_______________________________________+__________________________________=====1 IJ Step 2. IDENTIFY VOLUMES, in vph � Step 5. ASSIGN LANE VOLUMES, in vph � Step 7. SUM OF CRITICAL VOLUMES � � � 1 4 4 � (280(B2)+117(A2)+435(B4)+52(A4) � � A roach 3� �------- 4 3 0 3 -------� � ',� 3: LT= 834 TA= 35 _RT=-146--- J --I Approach 1--> J 1:LT= 521 � PP � � 2:RT= 63 � I � TH= 117 � v � LT= 8 � <--Approach 2 � � � � -------------� 280 _„ " � 4: RT= 4 � 241 +"' 6 5 0 5 "- 63 � = 884 vph � � + + � <- 117 �_______________________________________� < v>> v- 8 � Step 8. INTERSECTION LEVEL OF � � SERVICE � � (compare step 7 with table 6) � � � B � � ------- < � > �_______________________________________ + �+ � Step 9. RECALCULATE TH= 39 � � � TH= 32 � 39 +> I � RT- 0 � � � LT- 16 �------- -------�Geometric Change: � � Approach 4� � � 1 3 � �Signal Change: i � � � 6 2 4 � �Volume Change: - -- ----__+_______________________________________+_______________________________________� Step 3. IDENTIFY PHASING � Step 6a. CRITICAL VOLUMES, in vph � COMMENTS � � --^ � (two phase signal) � � A1B2 � � Approach 3� � i --> � � � � <-- A2B1 � � � ( � � v-- � � � � I A3B4 �------------- -------------� ' � I' I � Approach 1 � i I I A4B3 i See Step 6b. � I ',� i Approach 2 � I ------------- ------------ � �---------------------------------------� � � � I A1 --> A3 � B1 v-- B3 <� � � � � � �^ � � � � Approach 4� � Exclusive right turns reduced 0� � A2 <-- A4 � B2 --"' B4 �> � � V/C Ratio =.64 � D________________________________________________________________________________________________________________________ � ; J � i � --! Critical Movement Analysis: PLANNING Calculation Form 1 ' -�ntersection: BAYSHORE BLVD/AIRPORT BLVD-101 NB OFF Design Hour: PM PEAK iroblem Statement: APPROVED+PENDING+PROJECT -:------------------------------------------------------------ -------------------------------------------- I - ------------ Step 1. IDENTIF'Y LANE GEOMETRY � Step 4. LEFT TURN CHECK � Step 6b. VOLUME ADJUSTMENT FOR ,� � Approach 3:BAYSHORE � -------Approach-----� MULTIPHASE SIGNAL OVERLAP � J � 1 1 1 � � � :-1- -2- -3- -4-� Possible Volume Adjusted� � R L � N �a.No. of change 0 0 0 O�Prob- Critical Carryover Critical� 101 NB OFF � R T T T L � � intervals/hour . �able Volume to next Volume � ------------- T H H H T -------------�b.LT capacity on : 0 0 o O�Phase in vph phase in vph � �A roach 1 << >> "--RT 1 chan e( h) ---------------------------------- ' PP I I 9 �P • �""' � ' 1 LT--" v v v <"-RTH �c.G/C ratio . 0 0 0 O�AlB2 139(B2) OR 26(A1) 139� 1 LTH-"'> <--TA 1 �d.Opposing volume . 0 0 0 O�A2B1 184(A2) OR 3(B1) 184� TH--> ' <v-LTH � in vph . �A3B4 318(A3) OR 299(B4) 318� �_ � RTH-v> ""' " v--LT 1 �e.LT capacity on : 0 0 0 O�A4B3 93(A4) OR 45(B3) 93� RT--v << �>> Approach 2 � green (vph) : � � -----------I L L T R R -------------if.LvTn capacity in : 0 0 0 0� � T T H T T �AIRPORT h(b+e) � H H � �g.Left turn volume � 0 0 0 0� � I,� � 1 � � ln �h • . � i � Approach 4:DRIVEWAY �h.Is volume > cap. : • � (9>f) ? : � � _______________________________________+_______________________________________+_______________________________________� JStep 2. IDENTIFY VOLUMES, in vph � Step 5. ASSIGN LANE VOLUMES, in vph � Step 7. SUM OF CRITICAL VOLUMES � � � 3 2 2 � �139(B2)+184(A2)+318(A3)+93(A4) � � APProach 3) �------- 1 3 7 9 � --- ---� � �3: LT= 571 � � � 2:RT= 109 � 8 2 2 9 "'= 109 ( = 734 vph � TH= 32 � � � TH- 184 � �++ � <- 184 �_____^_________________________________� RT- 318 _-� v � LT= 3 � < v>> v 3 � Step 8. INTERSECTION LE�IEL OF � ----------- -------------i I SERVICE � � <--Approach 2 � (compare step-7-with table 6) i A I I Approach 1--> � � I"'"" � ---�------------ -------------� 139 -" < � > �_________________=_____________________� J1:LT= 256 � " � 4: RT= 9 � 117 +" + �+ � Step 9. RECALCULATE � TH= 26 � � � TH= 39 � 26 +> � � RT= 0 � � � LT= 45 �------- -------�Geometric Change: � � Approach 4� � � 4 3 � �Signal Change: • � �� � 5 9 9 � �Volume Change: i _______________________________________+_______________________________________+____________________=__________________ J------ Step 3. IDENTIFY PHASING � Step 6a. CRITICAL VOLUMES, in vph � COMMENTS � � (two phase signal) � � � --" A1B2 � � APProach 3� � ,' --> � � � � <-- A2B1 � � � � � V-- � � � � I � A3B4 �------------- -------------� � J I i � Approach 1 � • i I I A4B3 i See Step 6b. i I � �------------- APProach 2 i i ------------ I ---------------------------------------� � � � � � A1 --> A3 � Bl v-- B3 <� � � � � � �^ � � I � Approach 4� � Exclusive right turns reduced 0% � A2 <-- A4 � B2 --" B4 �> � � V/C Ratio =.53 � ------------------------------------------- --------------------------------------------------------------------- � . �1 � J � Critical Movement Analysis: PLANNING ' Calculation Form 1 �(ntersection: AZRPORT BLVD/ANZA AVE Design Hour: AM PEAK ��roblem Statement: APPROVED+PENDING+PROJECT ------------------------------------------------------------------------------------------------------------------------ Step 1. IDENTIFY LANE GEOMETRY � Step 4. LEFT TURN CAECK � Step 6b. VOLUME ADJUSTMENT FOR � � � Approach 3:AIRPORT � -- ----Approach-----� MULTIPHASE SIGNAL OVSRLAP � � 1 1 1 � � � .-1- -2- -3- -4-� Possible Volume Adjusted� � R L' � N �a.No. of change . 0 0 0 O�Prob- Critical Carryover Critical� ANZA � R T T T L � � intervals/hour . �able Volume to next Volume � �----------- < H H H T -------------�b.LT capacity on : 0 0 0 O�Phase in vph phase in vph � ApProach 1 (>> "--RT 1 � change (vph) : �---------------------------------------� �J 1 LT--" v v v <"-RTH �c.G/C ratio . 0 0 0 O�A1B2 97(A1) OR 50(B2) 97� 1 LTH-"> <--TH �d.Opposing volume . 0 0 0 O�A2B1 49(A2) OR 22(B1) 49� D TH--> w^^ <v-LTH 1 � in vph : �B4B3 138(B4) OR 100(B3) 138� RTH-v> v--LT �e.LT capacity on 0 0 0 O�A3A4 353(A3) OR 76(A4) 353� 1 RT--v << �>> Approach 2 � green (vph) • � � -------------I L L T R R -------------if.LVTP capacity in : 0 0 0 0� � T T H T T �DRIVEWAY h(b+e) . � I D � H H � �g.Left turn volume : 0 0 0 0� � � 1 1 1 � � in vph � I � Approach 4:AIRPORT �h.Is volume > cap. : : _ � (s>f) ? : � ' I --------------------------------------+------------------------------_--------+---------------------------------------I - - - - - ---------- ----------- ------------------------------ -------- --------------------------------------- Step 2. IDENTIFY VOLUMES, in vph � Step S. ASSIGN LANE VOLt]MES, in vph � Step 7. SUM OF CR.ITICAL VOLUMES � I I 3 3 1 � �97(A1)+49(A2)+138(B4)+353(A3) � � � � Approach 3� �------- 1 3 5 3 -------� � � 3: LT= 138 � � � 2:RT= 23 � 9 4 3 8 "- 23 � = 637 vph � TH= 686 � � � TH- 27 � ++ � � <+ 27 �_______________________________________� _-RT=_-19__-� v � LT= 22 � < v v>' v+ 22 � Step 8. INTERSECTION LEVSL OF � � --- -----I � SERVICE------ � <--Approach 2 � � (compare step 7 with table 6) � � � � � A � � Approach 1--> � 50 -� � ""'-- � �------------- ------------- 0 +"' < � � > � �_______________________________________ J1:LT= 50 � " � 4: RT= 13 � 93 +> � �++ i Step 9. RECALCULATE i TH= 93 I I � TH= 139 � 97 -v RT= 97 � I � LT= 100 �------- 1 -------�Geometric Change: i Approach 4 � � - 0 7 6 1 I �Signal Change: � � � � 0 6 3 3 � �Volume Change: � _______________________________________+___________________-___________________+_____________________________=_________� Step 3. IDENTIFY PHASING � Step 6a. CRITICAL VOLUMES, in vph � COhII�IENTS � ^� _-^ � (two phase signal) � � JA1B2 � � Approach 3� � I --> �-- �B� i i i i . i �-- i i i i i � < B4B3 �------------- -------------� � I I � Approach 1 � � � A3A4 � � ' v � � See Step 6b. I I � I------------- APProach 2 � � � � ------------� � ---------------------------------------� � � � I � A1 --> . A3 �^ B1 v-- B3 <� � � � � � � � � � � Approach 4� � Exclusive right turns reduced 0� � A2 <-- A4 � B2 --� B4 �> � � V/C Ratio =.46 � � ------ �_____________________________________________________________________________________________________________________ --- '� � J � � Critical Movement Analysis: PLAtINIIJG Calculation Form 1 ntersection: AIRPORT BLVD/ANZA AVE Design Hour: PM PFAK roblem Statement: APPROVED+PENDING+PROJECT ------------------------------------------------------------------------------------------------------------------------ Step 1. IDENTIFY LANE GEOMETRY � Step 4. LEFT TURN CHECK � Step 6b. VOLUME ADJUSTMENT FOR � � � Approach 3:AIRPORT � -------Approach-----� MULTIPHASE SIGNAL OVERLAP � � 1 1 1 � � � .=1.- -2- -3- -4-� Possible Volume Adjusted� � R L � N �a.No. of change . 0 0 0 O�Prob- Critical Carryover Critical� ANZA � R T T T L � � intervals/hour . �able Volume to next Volume � - T H H H T -------------�b.LT capacity on : 0 0 0 U�Phase in vph phase in vph � ---------- ------------- Approach 1 << �>> "--RT 1 � change (vph) : �-------------------------- � 1 LT--" v v v <"'-RTH �c.G/C ratio . 0 0 0 O�A1B2 59(A1) OR 53(B2) 59� 1 LTH-"'> <--TH �d.Opposing volume . 0 0 0 O�A2B1 151(A2) OR 45(B1) 151� � TH--> ^^^ <v-LTH 1 � in vph : �B4B3 371(B3) OR 56(B4) 371� RTH-v> v--LT �e.LT capacity on 0 0 0 O�A3A4 240(A3) OR 144(A4) 240� 1 RT--v << �>> Approach 2 � green (vph) • � � ------------- L L T R R -------------�f.LT capacity in : 0 0 0 0� � � � T T H T T �DRIVEWAY : � vph (b+e) � � H H � �g.Left turn volume : 0 0 0 0� � � 1 1 1 � � in vph � � � Approach 4:AIRPORT �h.2s volume > cap. : : � � (g>f> ? = I I +---------------------------------------+------------------------- �-------------------------------------- ------------------------------ -------- --------------------------------------- JStep 2. IDENTIF'Y VOLUMES, in vph � Step 5. ASSIGN LANE VOLUMES, in vph � Step 7. SUM OF CRITICAL•VOLUMES ( I � z� j js9cAi)+isic�)�+371(B3)+240(A3) ( � Approach 3� �-------I 2 1 4 5 -------� � � 3: LT= 56 � � � 2:RT= 24 � 5 5 0 6 "'- 24 � = 821 vph � TH= 454 I � � TH= 106 � ++ � � <+ 106 �_______________________________________� RT= 25 � v I LT= 45 � I c v v> v+ 45 � Step 8. INTERSECTION LEVEL OF � ^------------- ---PP------ i I SERVICE � � <--A roach 2 � (compare step_7_with table 6) i � � � A � � Approach 1--> � 53 -" � '-'--"" � �------------- - - 4 +" < � � > - ----------------� ----------- � �_______________________________________ J1:LT= 57 I " � 4e RT= 15 � 49 +> I I++ I Step 9. RECALCULATE � TH= 49 � � � TH= 272 � 59 -v � � 'RT= 59 � � � LT= 371 �------- 3 1 1 -------�Geometric Change: � � Approach 4� � � - 7 4 2 1 � �Signal Change: i � � I 1 4 9 5 � �Volume Change: _______________________________________+__________________-____________________+�______________________________________� Step 3. IDENTIFY PHASING � Step 6a. CRITICAL VOLUMES, in vph � COMMENTS � � -_^ � (two phase signal) � � A1B2 � � Approach 3� � i '<-- A2B1 � � � � � "� v-- � � � � � < B4B3 �------------- -------------� � ,� I � � Approach 1 � i A3A4 � � I � � See Step 6b. � I � � Approach 2 � I �------------- ------------� � ---------------------------------------� � � � I � A1 --> A3 �^ B1 v-- B3 <� � � � � � V I � � � Approach 4� � Exclusive right turns reduced 0 ic � A2 <-- A4 � B2 --" B4 �> � � V/C Ratio =.6 � ^'________________________________________________________________________________________________________________________ ------- J � � � � � L�J L�J � � � C � HCS: Unsignalized InterseCtions Release 2.1c AIRCOYAM.HCO Page 1 ----------------------------------------------------------------------- ----------------------------------------------------------------------- Center For Microcomputers In Transportation University of Florida 512 Weil Hall Gainesville, FL 32611-2083 Ph: (904) 392-0378 Streets: (N-S) AIRPORT BOULEVARD (E-W) COYOTE POINT DRIVE Major Street Direction.... EW Length of Time Analyzed... 60 (min) Analyst ................... JSW Date of Analysis.......... 2/11/97 Other Information.........APPROVED+PENDING+PROJECT - AM PEAK HOUR Two-way Stop-controlled Intersection -------------------------------------------------------------------- � Eastbound � Westbound � Northbound � Southbound � L T R � L T R � L T R � L T R �---- ---- ----�---- ---- ----�---- ---- ----�---- ---- ---- No. Lanes � 1 1 0 � 0 1 1 � 0 0 0 � 0 > 0 < 0 Stop/Yield ', Volumes 'I PHF I Grade MC's (�) I SU/RV's (�), CV's (�) PCE's 364 100 NI 48 6� � 8 150 .95 .95 � .95 .95� � .95 .95 � � � � � � p I � � 0 0 0 0 � � � � 0 0 1.00 � � �1.00 1.00 ----------------------------------------------------------- Adjustment Factors � � � � J Vehicle Critical Follow-up Maneuver Gap (tg) Time (tf) ------------------------------------------------------------------ Left Turn Major Road 5.00 2.10 Right Turn Minor Road 5.50 . 2.60 Through Traffic Minor Road 6.00 3_30 Left Turn Minor Road . 6.50 3.40 � J � HCS: Unsignalized Intersections Release 2.1c AIRCOYAM.HCO Page 2 ----------------------------------------------------------------------- ------------------------------------------ --------------- � Worksheet for TWSC Intersection -------------------------------------------------------- Step l: RT from Minor Street NB SB � -------------------------------------------------------- Conflicting Flows: (vph) 51 Potential Capacity: (pcph) 1305 Movement Capacity: (pcph) 1305 D Prob. of Queue-Free State: 0.88 Step 2: LT from Major Street WB EB -------------------------------------------------------- � Conflicting Flows: (vph) 57 Potential Capacity: (pcph) 1610 Movement Capacity: (pcph) 1610 Prob. of Queue-Free State: 0.76 -------------------------------------------------------- � Step 4: LT from Minor Street_____________NB SB Conflicting Flows: (vph) 542 Potential Capacity: (pcph) 514 (—j Major LT, Minor TH J Impedance Factor: 0.76 Adjusted Impedance Factor: 0.76 Capacity Adjustment Factor due to Impeding Movements 0.76 `� Movement Capacity: (pcph) -----------------------------------------------------392 � Intersection Performance Summary Avg. 95� Flow Move Shared Total Queue Approach Rate Cap Cap Delay Length LOS Delay � Movement (pcph) (pcph) (pcph)(sec/veh) (veh) --___ (sec/veh) SB L 8 392 > 1173 3.6 0.5 A 3.6 � SB R 158 1305 > EB L 383 1610 2.9 1.1 A 2.3 ^� Intersection Delay = 2.4 sec/veh • J � � � --, � � HCS: Unsignalized Intersections Release 2.1c AIRCOYPM.HCO Page 1 _______________________________________________________________________ � --------- Center For Microcomputers In Transportation University of Florida 512 Weil Hall Gainesville, FL 32611-2083 nPh_-(904)-392=0378_____________________________________________________ �� Streets: (N-S) AIRPORT BOULEVARD (E-W) COYOTE POINT DRIVE Major Street Direction.... EW � Length of Time Analyzed::: 60 (min) Analyst.. JSW Date of Analysis. 2/11/97 Other Information.........APPROVED+PENDING+PROJECT - PM PEAK HOUR Two-way Stop-controlled Intersection � � Eastbound � Westbound � Northbound � Southbound � L T R � L T R � L T R � L T R �---- ---- ----�---- ---- ----�---- ---- ----�---- ---- ---- D No. Lanes � 1 1 0 � 0 1 1 � 0 0 0 � 0 > 0 < 0 Stop/Yield � N� N� I Volumes � 215 54 � 98 SI � 12 577 PHF � .95 .95 � .95 .95� � .95 .95 ��I� Grade � 0 � 0 � � � MC's (�) � 0 � I I � 0 SU/RV's (%)� 0 I � � 0 0 CV's (�) � � � � � 0 0 "'j PCE's �i.00----------I--------------I--------------�i.00 i.00 � ---------------- ------------- � Adjustment Factors Vehicle Critical Follow-up Maneuver Gap (tg) Time (tf) � __________________________________________________________________ Left Turn Major Road 5.00 2.10 Right Turn Minor Road 5.50 2.60 Through Traffic Minor Road 6.00 3.30 � Left Turn Minor Road 6.50 3.40 � � J � � �, J � � � � � � . HCS: Unsignalized Intersections Release 2.1c AIRCOYPM.HCO Page 2 ,� _____________________;_________________________________________________ JWorksheet for TWSC Intersection -------------------------------------------------------- Step 1: RT from Minor Street NB SB � ________________________________________________________ Conflicting Flows: (vph) 103 Potential Capacity: (pcph) 1228 Movement Capacity: (pcph) 1228 Prob. of Queue-Free State: -_-------0.51 � ------------------------------------------- Step 2: LT from Major Street WB EB -------------------------------------------------------- I� Conflicting Flows: (vph) 111 Potential Capacity: (pcph) 1518 Movement Capacity: (pcph) 1518 Prob. of Queue-Free State: 0.85 -------------------------------------------------------- �� Step 4: LT from Minor Street-------------NB SB - Conflicting Flows: (vph) 390 Potential Capacity: (pcph) 629 '"� Major LT, Minor TH J Impedance Factor: 0.85 Adjusted Impedance Factor: 0.85 Capacity Adjustment Factor � due to Impeding Movements 0.85 Movement Capacity: (pcph) 535 -------------------------------------------------------- � Intersection Performance Summary � Avg. 95� Flow Move Shared Total � Queue Approach Rate Cap Cap Delay Length LOS Delay � Movement (pcph) (pcph) (pcph)(sec/veh) (veh) (sec/veh) -------- ------ ------ ------ ------- ------- ----- --------- "� SB L 13 535 > 1196 6.2 3.5 B 6.2 � SB R 607 1228 > EB L 226 1518 2.8 0.6 A 2.2 � Intersection Delay = 4.4 sec/veh � J � J � � J '� J �, J � J �. . � � _ ,. , . . � � - � , t� , . ; .r � � - � , � f � ' � � ' `� , - � � \ � . J � � - \',; - ' .� ' - � � � 1 v, . . . _- \ .� . ,J, '� � , � � . , ' ' . . - ;. ,. , � . t , , � .�� r - I \ ` �. ^ r ' � �' �' . , - . �� .,. .�� ' . . ` ,;� _. . ., ' . - .. . . ., . �' . ' . . . - ' � . . . � ' .. -\', . � ... .. � � � I • ��` J ,� ` _ , ' - �A�� � �endix �B � � , ' ��,_,., ` pp. . . . _ , J ; ' �, ,� � " � ' , �� � - ` 1 zer L�OS� � � , � ' � � Calcu:lation �Sh�eets ` � , �� --� _ , � , , . - . � � . � � _ ; _ ,, / . . . �- . i . � J . . . � . .' . I_' , . . � � . _. � . - . . - . . . . . . � - f .. . . � � ' . . j _ � .. ' r .. . 1 � ' _ � � ;:� ' ' \i'� . , \� �'. � • . � . . ., ' • � � .' . •.\ .. � ♦. . , . . . ' _ � .Y.� . ' ..�� . . . .. " � , � � ' � � �� � ''/ � \ . . �l " . . . . . . .... . . . " . . - ;� . . , . ` . .. . . . . J/ , . . ' ��1 '�l. , . ' � ' � . I /. ' V " � � F ,. J; �, . , � ; _ ; - � �. ` 1 . ; `- , . J- '` . �� . _, . - , . - . . , - . ,� ; � . . � - �" . : -. . � � �_ _ - � - � � �- , -. I � � ' : - . - ' l_.:. \ -` : ; - , , ,` �_ . . � � .. �. . , _ � � .A � , - � � � - , �. - � � -: _ . � .. � ' ' � ' � , ,. � , � . �� � � � , � 1 .. �.� . . . . . . . , ,. , . .. . , , .�� : � .. . _ . .. �. , •. � - . � �:' r . . - . . . . '., . , ' �, _ . . . . � .. �� - - . ,, . .. .. � � � . . . ... .. ' . . ... .. . � . ..� � .. .. :. � .. . . . ... . . � . . . . _, ��. . . . , �.. . ' . Bayshore and US 101 Ramps Existing AM Parameter 1 2 3 Volume 5 8 12 Lanes 0 1 0 Capacity 0 1360 0 V/C 0.02 0 CM North 0.02 East 0.21 South 0.21 West 0.01 Amber 0.12 Total V/C 0.57 Burlingame intersection Capacity Analysis 4 5 6 7 8 9 10 11 12 4 634 58 565 18 332 56 475 15 0 2 1 1 0.5 1.5 0 2 1 0 3040 1520 1360 3040 0 3040 1520 0.21 0.04 0.42 0.12 0.17 0.01 � Bayshore and US 101 Ramps Existing PM Parameter 1 2 3 Volume 2 5 11 Lanes 0 1 0 Capacity 0 1360 0 V/C 0.01 CM North 0.01 East 0.07 South 0.09 West . 0.34 Amber 0.12 Total V/C 0.63 Burlingame Intersection Capacity Analysis 4 5 6 7 8 9 10 11 12 2, 409 103 244 34 219 150 869 16 0 2 1 1 0.5 1.5 0 2 1 0 3040 1520 1360 3040 0 3040 1520 0.14 0.07 0.18 0.08 0.34 0.01 � � Burlingame Intersection Capacity Analysis Bayshore and Airport Existing AM Parameter 1 2 3 Volume 100 10$ 8 Lanes 1 1 1 Capacity 1360 1520 1520 V/C 0.07 0.07 0.01 � North 0.07 East 0.04 South 0.19 West 0.21 Amber 0.12 Total V/C 0.63 4 5 6 7 8 9 10 11 12 4 32 16 24 15 521 292 35 713 0 1 0 0 0.5 1.5 1 0.5 1.5 0 1360 0 0 0 2880 1360 0 3040 0.04 0.19 0.21 0.25 � � � � � � � U � � D ; D Bayshore and Airport Existing PM Parameter 1 2 3 Volume 189 148 3 Lanes 1 1 1 Capacity 1360 1520 1520 V/C 0.14 0.10 0.00 CM North 0.07 East 0.07 South 0.1 West 0.24 Amber 0.12 Total V/C 0.6 Burlingame Intersection Capacity Analysis 4 5 6 7 8 9 10 11 12 9 39 45 14 12 256 636 32 457 0 1 0 0 0.5 1.5 1 0.5 1.5 0 1360 0 0 0 2880 1360 0 3040 0.07 0.10 0.47 0.16 � � � � � U � Burlingame Intersection Capacity Analysis Airport and Anza Existing AM Parameter 1 2 3 4 5 6 7 8 9 10 11 12 Volume Lanes Capacity V/C 19 555 138 46 27 22 13 117 81 152 93 50 0 2 1 1 1 0 0 2 1 1 0.5 1.5 0 3040 1520 1360 1520 0 0 3040 1520 1360 0 3040 � 0.19 0.09 0.03 0.03 0.04 0.05 0.11 0.05 CM North 0.19 East 0.03 South 0.05 West 0.06 Amber 0.12 Total V/C 0.45 � Burlingame Intersection Capacity Analysis Airport and Anza Existing PM Parameter 1 2 3 4 5 6 7 8 9 10 11 12 Volume 25 343 56 48 106 45 15 223 285 82 49 � 57 Lanes 0 2 1 1 1 0 0 2 1 1 0.5 1.5 Capacity 0 3040 1520 1360 1520 0 0 3040 1520 1360 0 3040 V/C 0.12 0.04 0.04 0.10 0.08 0.19 0.06 0.03 CM North 0.12 East 0.1 South 0.19 West 0.03 Amber 0.12 Total V/C 0.56 � Burlingame Intersection Capacity Analysis Airport and Coyote � Existing AM Parameter 1 2 3 4 5 6 7 8 9 10 11 12 Volume 136 0 8 6 48 0 0 0 0 0 100 292 Lanes 0 .1 0 1 1 0 0 0 0 0 1 1 Capacity 0 1360 0 1360 1520 0 0 0 0 0 1520 1520 V/C 0.11 0 0.03 0.07 0.19 CM North East West Amber Total V/C 0.11 0.03 0.19 0.12 0.45 Burlingame Intersection Capacity Analysis Airport and Coyote Existing PM Parameter 1 2 3 4 5 Volume 479 0 12 8 98 Lanes 0 1 0 1 1 Capacity 0 1360 0 1360 1520 V/C 0.36 0.01 0.06 CM North 0.36 East ; 0.06 West 0.09 Amber 0.12 Total V/C 0.63 6 0 0 0 7 0 0 0 8 0 0 0 9 10 11 12 0 0 54 131 0 0 1 1 0 0 1520 1520 0.04 0.09 �